1887

Abstract

is a Gram-negative obligate intracellular bacterial pathogen that is the leading cause of bacterial sexually transmitted disease in humans in developing countries. A vaccination programme is considered to be the best approach to reduce the prevalence of infections. However, there are still no commercial vaccines. In order to develop effective vaccines, it is important to identify those antigens that elicit a protective immune response, and to develop new and adequate methods and adjuvants for effective vaccine delivery, as conventional methods have failed to induce protective immunity. In order to test different vaccine candidates, animal models are needed. Former studies have used non-primate monkeys, mice or guinea pig infection models. The present study used a pig model for testing recombinant protein vaccines. Two recombinant proteins, polymorphic membrane protein G (PmpG), and secretion and cellular translocation protein C (SctC), were tested for their ability to create protection in a pig challenge model. The vaccines were administered subcutaneously with GNE adjuvant. Six weeks later, animals were challenged intravaginally with serovar E. After a further 4 weeks, the pigs were euthanized. PmpG-immunized pigs were better protected than pigs immunized with the less promising SctC candidate vaccine antigen. Interestingly, significant protection was apparently not correlated with a strong humoral immune response upon subcutaneous immunization. In conclusion, the pig model is useful for studying the efficacy of vaccine candidates against genital human infection.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.024448-0
2011-01-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/jmm/60/1/117.html?itemId=/content/journal/jmm/10.1099/jmm.0.024448-0&mimeType=html&fmt=ahah

References

  1. Barron, A. L., White, H. J., Rank, R. G., Soloff, B. L. & Moses, E. B. ( 1981; ). A new animal model for the study of Chlamydia trachomatis genital infections: infection of mice with the agent of mouse pneumonitis. J Infect Dis 143, 63–66.[CrossRef]
    [Google Scholar]
  2. Beeckman, D. S. A. & Vanrompay, D. C. G. ( 2010; ). Bacterial secretion systems with an emphasis on the chlamydial type III secretion system. Curr Issues Mol Biol 12, 17–41.
    [Google Scholar]
  3. Bray, N., Dubchak, I. & Pachter, L. ( 2003; ). avid: a global alignment program. Genome Res 13, 97–102.[CrossRef]
    [Google Scholar]
  4. Caldwell, H. D. & Hitchcock, P. J. ( 1984; ). Monoclonal antibody against a genus-specific antigen of Chlamydia species: location of the epitope on chlamydial lipopolysaccharide. Infect Immun 44, 306–314.
    [Google Scholar]
  5. Crane, D. D., Carlson, J. H., Fischer, E. R., Bavoil, P., Hsia, R. C., Tan, C., Kuo, C. C. & Caldwell, H. D. ( 2006; ). Chlamydia trachomatis polymorphic membrane protein D is a species-common pan-neutralizing antigen. Proc Natl Acad Sci U S A 103, 1894–1899.[CrossRef]
    [Google Scholar]
  6. Dawson, H., Reece, J. & Urban, J. ( 2007; ). A comparative analysis of the porcine, murine, and human immune systems. In Abstracts of the Eighth Veterinary Immunology International Symposium, 15–19 August 2007, Ouro Preto, Brazil, p. 120.
  7. Gomes, J. P., Nunes, A., Bruno, W. J., Borrego, M. J., Florindo, C. & Dean, D. ( 2006; ). Polymorphisms in the nine polymorphic membrane proteins of Chlamydia trachomatis across all serovars: evidence for serovar Da recombination and correlation with tissue tropism. J Bacteriol 188, 275–286.[CrossRef]
    [Google Scholar]
  8. Gonzales, G. F., Muñoz, G., Sánchez, R., Henkel, R., Gallegos-Avila, G., Díaz-Gutierrez, O., Vigil, P., Vásquez, F., Kortebani, G. & other authors ( 2004; ). Update on the impact of Chlamydia trachomatis infection on male fertility. Andrologia 36, 1–23.[CrossRef]
    [Google Scholar]
  9. Goodin, J. L., Raab, R. W., Mckown, R. L., Coffman, G. L., Powell, B. S., Enama, J. T., Ligon, J. A. & Andrews, G. P. ( 2005; ). Yersinia pestis outer membrane type III secretion protein YscC: expression, purification, characterization, and induction of specific antiserum. Protein Expr Purif 40, 152–163.[CrossRef]
    [Google Scholar]
  10. Ibrahim, A. A., Refeidi, A. & El Mekki, A. A. ( 1996; ). Etiology and clinical features of acute epididymo-orchitis. Ann Saudi Med 16, 171–174.
    [Google Scholar]
  11. Johnson, A. P., Hetherington, C. M., Osborn, M. F., Thomas, B. J. & Taylor-Robinson, D. ( 1980; ). Experimental infection of the marmoset genital tract with Chlamydia trachomatis. Br J Exp Pathol 61, 291–295.
    [Google Scholar]
  12. Karunakaran, K. P., Rey-Ladino, J., Stoynov, N., Berg, K., Shen, C., Jiang, X., Gabel, B. R., Yu, H., Foster, L. J. & Brunham, R. C. ( 2008; ). Immunoproteomic discovery of novel T cell antigens from the obligate intracellular pathogen Chlamydia. J Immunol 180, 2459–2465.[CrossRef]
    [Google Scholar]
  13. Lyons, J. M., Ito, J. I. & Morre, S. A. ( 2004; ). Chlamydia trachomatis serovar E isolates from patients with different clinical manifestations have similar courses of infection in a murine model: host factors as major determinants of C. trachomatis mediated pathogenesis. J Clin Pathol 57, 657–659.[CrossRef]
    [Google Scholar]
  14. Mayr, A., Bachmann, P. A., Bibrack, B. & Wittman, G. ( 1974; ). Zellkulturen – Bebrütete Hühnereier – Versuchstiere. In Virologische Arbeitsmethoden, vol. 1, p. 35. Jena. : VEB Gustav Fischer Verlag.
    [Google Scholar]
  15. Møller, B. R. & Märdh, P. A. ( 1980; ). Experimental epididymitis and urethritis in grivet monkeys provoked by Chlamydia trachomatis. Fertil Steril 34, 275–279.
    [Google Scholar]
  16. Mygind, P. H., Christiansen, G., Roepstorff, P. & Birkelund, S. ( 2000; ). Membrane proteins PmpG and PmpH are major constituents of Chlamydia trachomatis L2 outer membrane complex. FEMS Microbiol Lett 186, 163–169.[CrossRef]
    [Google Scholar]
  17. Novak, M., Moldoveanu, Z., Schafer, D. P., Mestecky, J. & Compans, R. W. ( 1993; ). Murine model for evaluation of protective immunity to influenza virus. Vaccine 11, 55–60.[CrossRef]
    [Google Scholar]
  18. Nurminen, M., Lounatmaa, K., Leinonen, M. & Wahlström, E. ( 1984; ). The effect of mercaptoethanol on the solubilization of the 39.5 kDa major outer membrane protein of elementary bodies of Chlamydia trachomatis and purification of the protein. FEMS Microbiol Lett 24, 185–191.[CrossRef]
    [Google Scholar]
  19. Ripa, K. T., Moller, B. R., Mardh, P. A., Freundt, E. A. & Melsen, F. ( 1979; ). Experimental acute salpingitis in grivet monkeys provoked by Chlamydia trachomatis. Acta Pathol Microbiol Scand [B] 87B, 65–70.
    [Google Scholar]
  20. Schramek, S., Kazar, J. & Sadecky, E. ( 1980; ). Serological cross-reactions of lipid A components of lipopolysaccharides isolated from Chlamydia psittaci and Coxiella burnetii. Acta Virol 24, 224.
    [Google Scholar]
  21. Stamm, W. E. ( 1999; ). Chlamydia trachomatis infections: progress and problems. J Infect Dis 179, S380–S383.[CrossRef]
    [Google Scholar]
  22. Stephens, R. S., Kalman, S., Lammel, C., Fan, J., Marathe, R., Aravind, L., Mitchell, W., Olinger, L., Tatusov, R. L. & other authors ( 1998; ). Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282, 754–759.[CrossRef]
    [Google Scholar]
  23. Stothard, D. R., Toth, G. A. & Batteiger, B. E. ( 2003; ). Polymorphic membrane protein H has evolved in parallel with the three disease-causing groups of Chlamydia trachomatis. Infect Immun 71, 1200–1208.[CrossRef]
    [Google Scholar]
  24. Subtil, A., Blocker, A. & Dautry-Varsat, A. ( 2000; ). Type III secretion system in Chlamydia species: identified members and candidates. Microbes Infect 2, 367–369.[CrossRef]
    [Google Scholar]
  25. Taylor-Robinson, D. & Thomas, B. J. ( 1980; ). The role of Chlamydia trachomatis in genital-tract and associated diseases. J Clin Pathol 33, 205–233.[CrossRef]
    [Google Scholar]
  26. Thygeson, P. ( 1936; ). Ophthalmia neonatorum: a study of 261 cases. Trans Am Ophthalmol Soc 34, 340–371.
    [Google Scholar]
  27. Tuffrey, M. & Taylor-Robinson, D. ( 1981; ). Progesterone as a key factor in the development of a mouse model for genital-tract infection with Chlamydia trachomatis. FEMS Microbiol Lett 12, 111–115.[CrossRef]
    [Google Scholar]
  28. Tuggle, C. K., Green, J. A., Fitzsimmons, C., Woods, R., Prather, R. S., Malchenko, S., Soares, B. M., Kucaba, T., Crouch, K. & other authors ( 2003; ). EST-based gene discovery in pig: virtual expression patterns and comparative mapping to human. Mamm Genome 14, 565–579.[CrossRef]
    [Google Scholar]
  29. van Drunen Littel-van den Hurk, S., Gerdts, V., Loehr, B. I., Pontarollo, R., Rankin, R., Uwiera, R. & Babiuk, L. A. ( 2000; ). Recent advances in the use of DNA vaccines for the treatment of diseases of farmed animals. Adv Drug Deliv Rev 43, 13–28.[CrossRef]
    [Google Scholar]
  30. Vanrompay, D., Ducatelle, R. & Haesebrouck, F. ( 1992; ). Diagnosis of avian chlamydiosis: specificity of the modified Giménez staining on smears and comparison of the sensitivity of isolation in eggs and three different cell cultures. Zentralbl Veterinarmed B 39, 105–112.[CrossRef]
    [Google Scholar]
  31. Vanrompay, D., Hoang, T. Q. T., De Vos, L., Verminnen, K., Harkinezhad, T., Chiers, K., Morre, S. A. & Cox, E. ( 2005; ). Specific-pathogen-free pigs as an animal model for studying Chlamydia trachomatis genital infection. Infect Immun 73, 8317–8321.[CrossRef]
    [Google Scholar]
  32. Vanrompay, D., Lyons, J. M. & Morré, S. A. ( 2006; ). Animal models for the study of Chlamydia trachomatis infections in the female genital infection. Drugs Today (Barc) 42, 55–63.
    [Google Scholar]
  33. Van Zaane, D. & Hulst, M. M. ( 1987; ). Monoclonal antibodies against porcine immunoglobulin isotypes. Vet Immunol Immunopathol 16, 23–36.[CrossRef]
    [Google Scholar]
  34. Verminnen, K., Van Loock, M., Cox, E., Goddeeris, B. M. & Vanrompay, D. ( 2005; ). Protection of turkeys against Chlamydophila psittaci challenge by DNA and rMOMP vaccination and evaluation of the immunomodulating effect of 1α,25-dihydroxyvitamin D-3. Vaccine 23, 4509–4516.[CrossRef]
    [Google Scholar]
  35. Verminnen, K., Van Loock, M., Hafez, H. M., Ducatelle, R., Haesebrouck, F. & Vanrompay, D. ( 2006; ). Evaluation of a recombinant enzyme-linked immunosorbent assay for detecting Chlamydophila psittaci antibodies in turkey sera. Vet Res 37, 623–632.[CrossRef]
    [Google Scholar]
  36. Washington, A. E. & Katz, P. ( 1991; ). Cost of and payment source for pelvic inflammatory disease. Trends and projections, 1983 through 2000. JAMA 266, 2565–2569.[CrossRef]
    [Google Scholar]
  37. Weström, L., Joesoef, R., Reynolds, G., Hagdu, A. & Thompson, S. E. ( 1992; ). Pelvic inflammatory disease and fertility. A cohort study of 1,844 women with laparoscopically verified disease and 657 control women with normal laparoscopic results. Sex Transm Dis 19, 185–192.[CrossRef]
    [Google Scholar]
  38. WHO ( 2006; ). State of the Art of New Vaccines: Research and Development. Geneva: World Health Organization. http://www.path.org/vaccineresources/files/New_vaccines_rsch_dev.pdf.
  39. Woodland, R. M., Johnson, A. P. & Tuffrey, M. ( 1983; ). Animal models of chlamydial infection. Br Med Bull 39, 175–180.
    [Google Scholar]
  40. Yuan, Y., Lyng, K., Zhang, Y.-X., Rockey, D. D. & Morrison, R. P. ( 1992; ). Monoclonal antibodies define genus-specific, species-specific, and cross-reactive epitopes of the chlamydial 60-kilodalton heat-shock protein (hsp60): specific immunodetection and purification of chlamydial hsp60. Infect Immun 60, 2288–2296.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.024448-0
Loading
/content/journal/jmm/10.1099/jmm.0.024448-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error