1887

Abstract

The objective of this study was to determine the effect of antibiotics on viability by using a quantitative real-time PCR assay that measured DNA replication and mRNA transcription of the structural and genes, 16S rRNA and the gene with and without antibiotics. Ofloxacin, moxifloxacin, azithromycin and doxycycline were tested against the serovar D and L2 reference strains and a derivative mutant resistant to fluoroquinolones, L2-OFXR, obtained by selection. Using DNA quantification, the antibiotic MIC was calculated when the number of DNA copies was equal to that of the chlamydial inoculum at time zero. This method allowed the easy determination of MICs by DNA quantification of the four selected genes and gave similar results to those obtained by immunofluorescence staining without biased interpretation. By using cDNA quantification, the lowest antibiotic concentration for which no RNA was transcribed corresponded to the minimum bactericidal concentration. still transcribed the16S rRNA and genes, even at concentrations well above the MIC, showing a bacteriostatic effect for all antibiotics tested. This method allows the study of antibiotic activity on growth and viability of by DNA and RNA quantification at the same time without additional cell-culture passaging.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.023887-0
2011-04-01
2019-12-16
Loading full text...

Full text loading...

/deliver/fulltext/jmm/60/4/508.html?itemId=/content/journal/jmm/10.1099/jmm.0.023887-0&mimeType=html&fmt=ahah

References

  1. Bébéar, C. M., de Barbeyrac, B., Pereyre, S., Renaudin, H., Clerc, M. & Bébéar, C. ( 2008; ). Activity of moxifloxacin against the urogenital mycoplasmas Ureaplasma spp., Mycoplasma hominis and Mycoplasma genitalium and Chlamydia trachomatis. Clin Microbiol Infect 14, 801–805.[CrossRef]
    [Google Scholar]
  2. Boulos, A., Rolain, J. M., Maurin, M. & Raoult, D. ( 2004; ). Measurement of the antibiotic susceptibility of Coxiella burnetii using real time PCR. Int J Antimicrob Agents 23, 169–174.[CrossRef]
    [Google Scholar]
  3. Boulos, A., Rolain, J. M., Mallet, M. N. & Raoult, D. ( 2005; ). Molecular evaluation of antibiotic susceptibility of Tropheryma whipplei in axenic medium. J Antimicrob Chemother 55, 178–181.[CrossRef]
    [Google Scholar]
  4. Brennan, R. E. & Samuel, J. E. ( 2003; ). Evaluation of Coxiella burnetii antibiotic susceptibilities by real-time PCR assay. J Clin Microbiol 41, 1869–1874.[CrossRef]
    [Google Scholar]
  5. Cross, N. A., Kellock, D. J., Kinghorn, G. R., Taraktchoglou, M., Bataki, E., Oxley, K. M., Hawkey, P. M. & Eley, A. ( 1999; ). Antimicrobial susceptibility testing of Chlamydia trachomatis using a reverse transcriptase PCR-based method. Antimicrob Agents Chemother 43, 2311–2313.
    [Google Scholar]
  6. Dessus-Babus, S., Bébéar, C. M., Charron, A., Bébéar, C. & de Barbeyrac, B. ( 1998; ). Sequencing of gyrase and topoisomerase IV quinolone-resistance-determining regions of Chlamydia trachomatis and characterization of quinolone-resistant mutants obtained in vitro. Antimicrob Agents Chemother 42, 2474–2481.
    [Google Scholar]
  7. Donati, M., Rodrìguez Fermepin, M., Olmo, A., D'Apote, L. & Cevenini, R. ( 1999; ). Comparative in-vitro activity of moxifloxacin, minocycline and azithromycin against Chlamydia spp. J Antimicrob Chemother 43, 825–827.[CrossRef]
    [Google Scholar]
  8. Dreses-Werringloer, U., Padubrin, I., Jürgens-Saathoff, B., Hudson, A. P., Zeidler, H. & Köhler, L. ( 2000; ). Persistence of Chlamydia trachomatis is induced by ciprofloxacin and ofloxacin in vitro. Antimicrob Agents Chemother 44, 3288–3297.[CrossRef]
    [Google Scholar]
  9. Dugan, J., Rockey, D. D., Jones, L. & Andersen, A. A. ( 2004; ). Tetracycline resistance in Chlamydia suis mediated by genomic islands inserted into the chlamydial inv-like gene. Antimicrob Agents Chemother 48, 3989–3995.[CrossRef]
    [Google Scholar]
  10. Dutilh, B., Bébéar, C., Rodriguez, P., Vekris, A., Bonnet, J. & Garret, M. ( 1989; ). Specific amplification of a DNA sequence common to all Chlamydia trachomatis serovars using the polymerase chain reaction. Res Microbiol 140, 7–16.[CrossRef]
    [Google Scholar]
  11. Gérard, H. C., Krausse-Opatz, B., Wang, Z., Rudy, D., Rao, J. P., Zeidler, H., Schumacher, H. R., Whittum-Hudson, J. A., Köhler, L. & Hudson, A. P. ( 2001; ). Expression of Chlamydia trachomatis genes encoding products required for DNA synthesis and cell division during active versus persistent infection. Mol Microbiol 41, 731–741.[CrossRef]
    [Google Scholar]
  12. Karunakaran, K. P., Noguchi, Y., Read, T. D., Cherkasov, A., Kwee, J., Shen, C., Nelson, C. C. & Brunham, R. C. ( 2003; ). Molecular analysis of the multiple GroEL proteins of chlamydiae. J Bacteriol 185, 1958–1966.[CrossRef]
    [Google Scholar]
  13. Lenart, J., Andersen, A. A. & Rockey, D. D. ( 2001; ). Growth and development of tetracycline-resistant Chlamydia suis. Antimicrob Agents Chemother 45, 2198–2203.[CrossRef]
    [Google Scholar]
  14. Peeling, R. W., Bowie, W. R., Dillon, J. R., Johnson, R., Jones, R. B., Van del Pol, B., Low, D. T., Martin, D. H., Newhall, J. & other authors ( 1994; ). Standardisation of antimicrobial susceptibility testing for Chlamydia trachomatis. In Chlamydial Infections: Eighth International Symposium on Human Chlamydial Infections, pp. 346–349. Edited by Orfila, J., Byrne, G. I., Chernesky, M. A., Grayston, J. T., Jones, R. B., Saikku, G. L., Schachter, J., Stamm, W. E. & Stephens, R. S.. Bologna. : Società Editrice Esculapio.
    [Google Scholar]
  15. Rolain, J. M., Mallet, M. N., Fournier, P. E. & Raoult, D. ( 2004; ). Real-time PCR for universal antibiotic susceptibility testing. J Antimicrob Chemother 54, 538–541.[CrossRef]
    [Google Scholar]
  16. Shaw, E. I., Dooley, C. A., Fischer, E. R., Scidmore, M. A., Fields, K. A. & Hackstadt, T. ( 2000; ). Three temporal classes of gene expression during the Chlamydia trachomatis developmental cycle. Mol Microbiol 37, 913–925.[CrossRef]
    [Google Scholar]
  17. Somani, J., Bhullar, V. B., Workowski, K. A., Farshy, C. E. & Black, C. M. ( 2000; ). Multiple drug-resistant Chlamydia trachomatis associated with clinical treatment failure. J Infect Dis 181, 1421–1427.[CrossRef]
    [Google Scholar]
  18. Storm, M., Gustafsson, I., Herrmann, B. & Engstrand, L. ( 2005; ). Real-time PCR for pharmacodynamic studies of Chlamydia trachomatis. J Microbiol Methods 61, 361–367.[CrossRef]
    [Google Scholar]
  19. Suchland, R. J., Geisler, W. M. & Stamm, W. E. ( 2003; ). Methodologies and cell lines used for antimicrobial susceptibility testing of Chlamydia spp. Antimicrob Agents Chemother 47, 636–642.[CrossRef]
    [Google Scholar]
  20. Wang, S. A., Papp, J. R., Stamm, W. E., Peeling, R. W., Martin, D. H. & Holmes, K. K. ( 2005; ). Evaluation of antimicrobial resistance and treatment failures for Chlamydia trachomatis: a meeting report. J Infect Dis 191, 917–923.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.023887-0
Loading
/content/journal/jmm/10.1099/jmm.0.023887-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error