1887

Abstract

Phenylpropanoids constitute a large part of our daily diet and there is a possibility that they might interact with synthetic drugs. The present work was aimed at studying the interaction of seven phenylpropanoids (cinnamic, -coumaric, caffeic, chlorogenic, ferulic, 3,4-dimethoxycinnamic and 2,4,5-trimethoxycinnamic acid) with five antibiotics (amikacin, ampicillin, ciprofloxacin, erythromycin and vancomycin) against Gram-negative (, and ) and Gram-positive () bacteria. The interaction studies were performed by chequerboard and time–kill curve assays. Both assays revealed that cinnamic, -coumaric and ferulic acids were the most active. They combined synergistically with the majority of the antibiotics and exhibited enhanced activity against all the micro-organisms. The time–kill curve parameters were better (<0.05) for the combinations of amikacin with ferulic, cinnamic or -coumaric acid than for the individual treatments. Amikacin was the most favourable antibiotic and was the most sensitive microbe to most of the combinations. These phenylpropanoids damaged the bacterial membrane as assessed by the LIVE/DEAD Light kit, and structure–activity relationship studies indicated that hydrophilic groups enhanced this activity.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.022426-0
2010-12-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/jmm/59/12/1469.html?itemId=/content/journal/jmm/10.1099/jmm.0.022426-0&mimeType=html&fmt=ahah

References

  1. Aresta, M., Acquaviva, M. I., Baruzzi, F., Lo Noce, R. M., Matarante, A., Narracci, M., Stabili, L. & Cavallo, R. A. ( 2010; ). Isolation and characterization of polyphenols-degrading bacteria from olive-mill wastewaters polluted soil. World J Microbiol Biotechnol 26, 639–647.[CrossRef]
    [Google Scholar]
  2. Betrosian, A. P. & Douzinas, E. E. ( 2009; ). Ampicillin-sulbactam: an update on the use of parenteral and oral forms in bacterial infections. Expert Opin Drug Metab Toxicol 5, 1099–1112.[CrossRef]
    [Google Scholar]
  3. Campos, M. A., Morey, P. & Bengoechea, J. A. ( 2006; ). Quinolones sensitize Gram-negative bacteria to antimicrobial peptides. Antimicrob Agents Chemother 50, 2361–2367.[CrossRef]
    [Google Scholar]
  4. Campos, F. M., Couto, J. A., Figueiredo, A. R., Tóth, I. V., Rangel, A. O. S. S. & Hogg, T. A. ( 2009; ). Cell membrane damage induced by phenolic acids on wine lactic acid bacteria. Int J Food Microbiol 135, 144–151.[CrossRef]
    [Google Scholar]
  5. Clifford, M. N. ( 1999; ). Chlorogenic acids and other cinnamates – nature, occurrence and dietary burden. J Sci Food Agric 79, 362–372.[CrossRef]
    [Google Scholar]
  6. Clifford, M. N. ( 2000; ). Chlorogenic acids and other cinnamates – nature, occurrence, dietary burden, absorption and metabolism. J Sci Food Agric 80, 1033–1043.[CrossRef]
    [Google Scholar]
  7. CLSI ( 2006; ). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, 7th edn. Approved Standard M7-A7. Wayne, PA: Clinical and Laboratory Standards Institute.
  8. Couteau, D., McCartney, A. L., Gibson, G. R., Williamson, G. & Faulds, C. B. ( 2001; ). Isolation and characterization of human colonic bacteria able to hydrolyse chlorogenic acid. J Appl Microbiol 90, 873–881.[CrossRef]
    [Google Scholar]
  9. Ghose, A. K., Viswanadhan, V. N. & Wendoloski, J. J. ( 1998; ). Prediction of hydrophobic (lipophilic) properties of small organic molecules using fragmental methods: an analysis of ALOGP and CLOGP methods. J Phys Chem 102, 3762–3772.[CrossRef]
    [Google Scholar]
  10. Gonthier, M.-P., Verny, M.-A., Besson, C., Rémésy, C. & Scalbert, A. ( 2003; ). Chlorogenic acid bioavailability largely depends on its metabolism by the gut microflora in rats. J Nutr 133, 1853–1859.
    [Google Scholar]
  11. Gonthier, M.-P., Rémésy, C., Scalbert, A., Cheynier, V., Souquet, J.-M., Poutanen, K. & Aura, A.-M. ( 2006; ). Microbial metabolism of caffeic acid and its esters chlorogenic and caftaric acids by human faecal microbiota in vitro. Biomed Pharmacother 60, 536–540.[CrossRef]
    [Google Scholar]
  12. Gumbinger, H. G., Vahlensieck, U. & Winterhoff, H. ( 1993; ). Metabolism of caffeic acid in the isolated perfused rat liver. Planta Med 59, 491–493.[CrossRef]
    [Google Scholar]
  13. Hemaiswarya, S. & Doble, M. ( 2009; ). Synergistic interaction of eugenol with antibiotics against Gram negative bacteria. Phytomedicine 16, 997–1005.[CrossRef]
    [Google Scholar]
  14. Hilliard, J. J., Goldschmidt, R. M., Licata, L., Baum, E. Z. & Bush, K. ( 1999; ). Multiple mechanisms of action for inhibitors of histidine protein kinases from bacterial two-component systems. Antimicrob Agents Chemother 43, 1693–1699.
    [Google Scholar]
  15. Karelson, M. ( 2000; ). Molecular Descriptors in QSAR/QSPR. New York. : Wiley Interscience.
    [Google Scholar]
  16. Korkina, L. G. ( 2007; ). Phenylpropanoids as naturally occurring antioxidants: from plant defense to human health. Cell Mol Biol (Noisy-le-grand) 53, 15–25.
    [Google Scholar]
  17. Loke, W. M., Jenner, A. M., Proudfoot, J. M., McKinley, A. J., Hodgson, J. M., Halliwell, B. & Croft, K. D. ( 2009; ). A metabolite profiling approach to identify biomarkers of flavonoid intake in humans. J Nutr 139, 2309–2314.[CrossRef]
    [Google Scholar]
  18. Masri, M. S., Robbins, D. J., Emerson, O. H. & DeEds, F. ( 1964; ). Selective para- or meta-O-methylation with catechol O-methyl transferase from rat liver. Nature 202, 878–879.[CrossRef]
    [Google Scholar]
  19. Odds, F. C. ( 2003; ). Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother 52, 1.[CrossRef]
    [Google Scholar]
  20. Olthof, M. R., Hollman, P. C. H. & Katan, M. B. ( 2001; ). Chlorogenic acid and caffeic acid are absorbed in humans. J Nutr 131, 66–71.
    [Google Scholar]
  21. Olthof, M. R., Hollman, P. C., Buijsman, M. N., van Amelsvoort, J. M. & Katan, M. B. ( 2003; ). Chlorogenic acid, quercetin-3-rutinoside and black tea phenols are extensively metabolized in humans. J Nutr 133, 1806–1814.
    [Google Scholar]
  22. Paglia, P., Molinari, G., Pesce, A. & Debbia, E. A. ( 1989; ). Dactimicin, a new aminoglycoside: in vitro activity, post-antibiotic effect and interaction with other antibiotics. Eur J Clin Microbiol Infect Dis 8, 639–643.[CrossRef]
    [Google Scholar]
  23. Pai, M. P., Samples, M. L., Mercier, R. C. & Spilde, M. N. ( 2008; ). Activity and ultrastructural effects of antifungal combinations against simulated Candida endocardial vegetations. Antimicrob Agents Chemother 52, 2367–2376.[CrossRef]
    [Google Scholar]
  24. Plumb, G. W., Garcia-Conesa, M. T., Kroon, P. A., Rhodes, M., Ridley, S. & Williamson, G. ( 1999; ). Metabolism of chlorogenic acid by human plasma, liver, intestine and gut microflora. J Sci Food Agric 79, 390–392.[CrossRef]
    [Google Scholar]
  25. Rastogi, N., Goh, K. S., Wright, E. L. & Barrow, W. W. ( 1994; ). Potential drug targets for Mycobacterium avium defined by radiometric drug-inhibitor combination techniques. Antimicrob Agents Chemother 38, 2287–2295.[CrossRef]
    [Google Scholar]
  26. Rastogi, N., Goh, K. S., Horgen, L. & Barrow, W. W. ( 1998; ). Synergistic activities of antituberculous drugs with cerulenin and trans-cinnamic acid against Mycobacterium tuberculosis. FEMS Immunol Med Microbiol 21, 149–157.[CrossRef]
    [Google Scholar]
  27. Rozès, N. & Peres, C. ( 1998; ). Effects of phenolic compounds on the growth and the fatty acid composition of Lactobacillus plantarum. Appl Microbiol Biotechnol 49, 108–111.[CrossRef]
    [Google Scholar]
  28. Saiman, L. ( 2007; ). Clinical utility of synergy testing for multidrug-resistant Pseudomonas aeruginosa isolated from patients with cystic fibrosis: ‘the motion for’. Paediatr Respir Rev 8, 249–255.[CrossRef]
    [Google Scholar]
  29. Sung, W. S. & Lee, D. G. ( 2010; ). Antifungal action of chlorogenic acid against pathogenic fungi, mediated by membrane disruption. Pure Appl Chem 82, 219–226.
    [Google Scholar]
  30. Tam, V. H., Schilling, A. N. & Nikolaou, M. ( 2005; ). Modelling time-kill studies to discern the pharmacodynamics of meropenem. J Antimicrob Chemother 55, 699–706.[CrossRef]
    [Google Scholar]
  31. Todeschini, R. & Consonni, V. ( 2000; ). Handbook of Molecular Descriptors. Weinheim. : Wiley-VCH.
    [Google Scholar]
  32. Todeschini, R., Lasagni, M. & Marengo, E. ( 1994; ). New molecular descriptors for 2D and 3D structures. Theory. J Chemom 8, 263–272.[CrossRef]
    [Google Scholar]
  33. Tonari, K., Mitsui, K. & Yonemoto, K. ( 2002; ). Structure and antibacterial activity of cinnamic acid related compounds. J Oleo Sci 51, 271–273.[CrossRef]
    [Google Scholar]
  34. Wagner, H. & Ulrich-Merzenich, G. ( 2009; ). Synergy research: approaching a new generation of phytopharmaceuticals. Phytomedicine 16, 97–110.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.022426-0
Loading
/content/journal/jmm/10.1099/jmm.0.022426-0
Loading

Data & Media loading...

Supplements

vol. , part 12, pp. 1469-1476

MICs of antibiotics and phenylpropanoids against various bacteria. [PDF](11 KB)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error