1887

Abstract

is an opportunistic human pathogen that causes serious and chronic infections. Many secondary metabolites are secreted throughout its growth, among which phenazine is a known virulence factor and signalling molecule. Phenazine is coordinately controlled by the global regulatory quorum-sensing (QS) systems. Despite the detailed understanding of phenazine biosynthesis pathways in , the regulatory networks are still not fully clear. In the present study, the regulation of the operon () has been investigated. Screening of 5000 transposon mutants revealed 14 interrupted genes with altered expression, including (QteE), which has been identified as a novel regulator of the QS system. Overexpression of in significantly reduced the accumulation of homoserine lactone signals and affected the QS-controlled phenotypes such as the production of pyocyanin, rhamnolipids and LasA protease and swarming motility. Indeed, overexpression of in attenuated its pathogenicity in the potato and fruit fly infection models. These findings suggest that plays an important role in pathogenicity and is part of the regulatory networks controlling phenazine production.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.022350-0
2011-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/60/1/22.html?itemId=/content/journal/jmm/10.1099/jmm.0.022350-0&mimeType=html&fmt=ahah

References

  1. Akiyama M., Oishi K., Tao M., Matsumoto K., Pollack M. 2000; Antibacterial properties of Pseudomonas aeruginosa immunotype 1 lipopolysaccharide-specific monoclonal antibody (MAb) in a murine thigh infection model: combined effects of MAb and ceftazidime. Microbiol Immunol 44:629–635 [CrossRef]
    [Google Scholar]
  2. Allen L., Dockrell D. H., Pattery T., Lee D. G., Cornelis P., Hellewell P. G., Whyte M. K. 2005; Pyocyanin production by Pseudomonas aeruginosa induces neutrophil apoptosis and impairs neutrophil-mediated host defenses in vivo. J Immunol 174:3643–3649 [CrossRef]
    [Google Scholar]
  3. Baert B., Baysse C., Matthijs S., Cornelis P. 2008; Multiple phenotypic alterations caused by a c -type cytochrome maturation ccmC gene mutation in Pseudomonas aeruginosa . Microbiology 154:127–138 [CrossRef]
    [Google Scholar]
  4. Blackwood L. L., Stone R. M., Iglewski B. H., Pennington J. E. 1983; Evaluation of Pseudomonas aeruginosa exotoxin A and elastase as virulence factors in acute lung infection. Infect Immun 39:198–201
    [Google Scholar]
  5. Chambers C. E., Visser M. B., Schwab U., Sokol P. A. 2005; Identification of N-acylhomoserine lactones in mucopurulent respiratory secretions from cystic fibrosis patients. FEMS Microbiol Lett 244:297–304 [CrossRef]
    [Google Scholar]
  6. Chugani S. A., Whiteley M., Lee K. M., D'Argenio D., Manoil C., Greenberg E. P. 2001; QscR, a modulator of quorum-sensing signal synthesis and virulence in Pseudomonas aeruginosa . Proc Natl Acad Sci U S A 98:2752–2757 [CrossRef]
    [Google Scholar]
  7. de Kievit T., Seed P. C., Nezezon J., Passador L., Iglewski B. H. 1999; RsaL, a novel repressor of virulence gene expression in Pseudomonas aeruginosa . J Bacteriol 181:2175–2184
    [Google Scholar]
  8. Dénervaud V., TuQuoc P., Blanc D., Favre-Bonté S., Krishnapillai V., Reimmann C., Haas D., van Delden C. 2004; Characterization of cell-to-cell signaling-deficient Pseudomonas aeruginosa strains colonizing intubated patients. J Clin Microbiol 42:554–562 [CrossRef]
    [Google Scholar]
  9. Denning G. M., Wollenweber L. A., Railsback M. A., Cox C. D., Stoll L. L., Britigan B. E. 1998; Pseudomonas pyocyanin increases interleukin-8 expression by human airway epithelial cells. Infect Immun 66:5777–5784
    [Google Scholar]
  10. Déziel E., Lépine F., Milot S., He J., Mindrinos M. N., Tompkins R. G., Rahme L. G. 2004; Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc Natl Acad Sci U S A 101:1339–1344 [CrossRef]
    [Google Scholar]
  11. Dietrich L. E., Price-Whelan A., Petersen A., Whiteley M., Newman D. K. 2006; The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa . Mol Microbiol 61:1308–1321 [CrossRef]
    [Google Scholar]
  12. Diggle S. P., Winzer K., Chhabra S. R., Worrall K. E., Camara M., Williams P. 2003; The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl -dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Mol Microbiol 50:29–43 [CrossRef]
    [Google Scholar]
  13. Ditta G., Stanfield S., Corbin D., Helinski D. R. 1980; Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti . Proc Natl Acad Sci U S A 77:7347–7351 [CrossRef]
    [Google Scholar]
  14. Dong Y. H., Zhang X. F., Xu J. L., Tan A. T., Zhang L. H. 2005; VqsM, a novel AraC-type global regulator of quorum-sensing signalling and virulence in Pseudomonas aeruginosa . Mol Microbiol 58:552–564 [CrossRef]
    [Google Scholar]
  15. Duan K., Surette M. G. 2007; Environmental regulation of Pseudomonas aeruginosa PAO1 Las and Rhl quorum-sensing systems. J Bacteriol 189:4827–4836 [CrossRef]
    [Google Scholar]
  16. Duan K., Dammel C., Stein J., Rabin H., Surette M. G. 2003; Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication. Mol Microbiol 50:1477–1491 [CrossRef]
    [Google Scholar]
  17. Essar D. W., Eberly L., Hadero A., Crawford I. P. 1990; Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa : interchangeability of the two anthranilate synthases and evolutionary implications. J Bacteriol 172:884–900
    [Google Scholar]
  18. Gallagher L. A., McKnight S. L., Kuznetsova M. S., Pesci E. C., Manoil C. 2002; Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa . J Bacteriol 184:6472–6480 [CrossRef]
    [Google Scholar]
  19. Guerra-Santos L. H., Käppeli O., Fiechter A. 1986; Dependence of Pseudomonas aeruginosa continuous culture biosurfactant production on nutritional and environmental factors. Appl Microbiol Biotechnol 24:443–448
    [Google Scholar]
  20. Heurlier K., Williams F., Heeb S., Dormond C., Pessi G., Singer D., Camara M., Williams P., Haas D. 2004; Positive control of swarming, rhamnolipid synthesis, and lipase production by the posttranscriptional RsmA/RsmZ system in Pseudomonas aeruginosa PAO1. J Bacteriol 186:2936–2945 [CrossRef]
    [Google Scholar]
  21. Hoang T. T., Karkhoff-Schweizer R. R., Kutchma A. J., Schweizer H. P. 1998; A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212:77–86 [CrossRef]
    [Google Scholar]
  22. Hoang T. T., Kutchma A. J., Becher A., Schweizer H. P. 2000; Integration-proficient plasmids for Pseudomonas aeruginosa : site-specific integration and use for engineering of reporter and expression strains. Plasmid 43:59–72 [CrossRef]
    [Google Scholar]
  23. Howe T. R., Iglewski B. H. 1984; Isolation and characterization of alkaline protease-deficient mutants of Pseudomonas aeruginosa in vitro and in a mouse eye model. Infect Immun 43:1058–1063
    [Google Scholar]
  24. Kessler E., Safrin M., Olson J. C., Ohman D. E. 1993; Secreted LasA of Pseudomonas aeruginosa is a staphylolytic protease. J Biol Chem 268:7503–7508
    [Google Scholar]
  25. Koch A. K., Kappeli O., Fiechter A., Reiser J. 1991; Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants. J Bacteriol 173:4212–4219
    [Google Scholar]
  26. Köhler T., Curty L. K., Barja F., van Delden C., Pechère J.-C. 2000; Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol 182:5990–5996 [CrossRef]
    [Google Scholar]
  27. Kulasekara H. D., Ventre I., Kulasekara B. R., Lazdunski A., Filloux A., Lory S. 2005; A novel two-component system controls the expression of Pseudomonas aeruginosa fimbrial cup genes. Mol Microbiol 55:368–380
    [Google Scholar]
  28. Kurachi M. 1958; Studies on the biosynthesis of pyocyanine. Isolation and determination of pyocyanine. Bull Inst Chem Res Kyoto Univ 36:163–173
    [Google Scholar]
  29. Latifi A., Winson M. K., Foglino M., Bycroft B. W., Stewart G. S., Lazdunski A., Williams P. 1995; Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1. Mol Microbiol 17:333–343 [CrossRef]
    [Google Scholar]
  30. Lau G. W., Hassett D. J., Ran H., Kong F. 2004; The role of pyocyanin in Pseudomonas aeruginosa infection. Trends Mol Med 10:599–606 [CrossRef]
    [Google Scholar]
  31. Laursen J. B., Nielsen J. 2004; Phenazine natural products: biosynthesis, synthetic analogues, and biological activity. Chem Rev 104:1663–1686 [CrossRef]
    [Google Scholar]
  32. Liang H., Li L., Dong Z., Surette M. G., Duan K. 2008; The YebC family protein PA0964 negatively regulates the Pseudomonas aeruginosa quinolone signal system and pyocyanin production. J Bacteriol 190:6217–6227 [CrossRef]
    [Google Scholar]
  33. Mavrodi D. V., Ksenzenko V. N., Bonsall R. F., Cook R. J., Boronin A. M., Thomashow L. S. 1998; A seven-gene locus for synthesis of phenazine-1-carboxylic acid by Pseudomonas fluorescens 2-79. J Bacteriol 180:2541–2548
    [Google Scholar]
  34. Mavrodi D. V., Bonsall R. F., Delaney S. M., Soule M. J., Phillips G., Thomashow L. S. 2001; Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J Bacteriol 183:6454–6465 [CrossRef]
    [Google Scholar]
  35. McGrath S., Wade D. S., Pesci E. C. 2004; Dueling quorum sensing systems in Pseudomonas aeruginosa control the production of the Pseudomonas quinolone signal (PQS. FEMS Microbiol Lett 230:27–34 [CrossRef]
    [Google Scholar]
  36. Pearson J. P., Pesci E. C., Iglewski B. H. 1997; Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol 179:5756–5767
    [Google Scholar]
  37. Piper K. R., Farrand S. K. 2000; Quorum sensing but not autoinduction of Ti plasmid conjugal transfer requires control by the opine regulon and the antiactivator TraM. J Bacteriol 182:1080–1088 [CrossRef]
    [Google Scholar]
  38. Price-Whelan A., Dietrich L. E., Newman D. K. 2006; Rethinking ‘secondary' metabolism: physiological roles for phenazine antibiotics. Nat Chem Biol 2:71–78 [CrossRef]
    [Google Scholar]
  39. Rodríguez-Rojas A., Mena A., Martín S., Borrell N., Oliver A., Blázquez J. 2009; Inactivation of the hmgA gene of Pseudomonas aeruginosa leads to pyomelanin hyperproduction, stress resistance and increased persistence in chronic lung infection. Microbiology 155:1050–1057 [CrossRef]
    [Google Scholar]
  40. Schuster M., Lostroh C. P., Ogi T., Greenberg E. P. 2003; Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol 185:2066–2079 [CrossRef]
    [Google Scholar]
  41. Schweizer H. P. 1992; Allelic exchange in Pseudomonas aeruginosa using novel ColE1-type vectors and a family of cassettes containing a portable oriT and the counter-selectable Bacillus subtilis sacB marker. Mol Microbiol 6:1195–1204 [CrossRef]
    [Google Scholar]
  42. Schweizer H. P. 1993; Two plasmids, X1918 and Z1918, for easy recovery of the xylE and lacZ reporter genes. Gene 134:89–91 [CrossRef]
    [Google Scholar]
  43. Sibley C. D., Duan K., Fischer C., Parkins M. D., Storey D. G., Rabin H. R., Surette M. G. 2008; Discerning the complexity of community interactions using a Drosophila model of polymicrobial infections. PLoS Pathog 4:e1000184 [CrossRef]
    [Google Scholar]
  44. Siehnel R., Traxler B., An D. D., Parsek M. R., Schaefer A. L., Singh P. K. 2010; A unique regulator controls the activation threshold of quorum-regulated genes in Pseudomonas aeruginosa . Proc Natl Acad Sci U S A 107:7916–7921 [CrossRef]
    [Google Scholar]
  45. Simon R., Priefer U., Pühler A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Nat Biotechnol 1:784–791 [CrossRef]
    [Google Scholar]
  46. Stover C. K., Pham X. Q., Erwin A. L., Mizoguchi S. D., Warrener P., Hickey M. J., Brinkman F. S., Hufnagle W. O., Kowalik D. J. other authors 2000; Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964 [CrossRef]
    [Google Scholar]
  47. Venturi V. 2006; Regulation of quorum sensing in Pseudomonas . FEMS Microbiol Rev 30:274–291 [CrossRef]
    [Google Scholar]
  48. Wade D. S., Calfee M. W., Rocha E. R., Ling E. A., Engstrom E., Coleman J. P., Pesci E. C. 2005; Regulation of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa . J Bacteriol 187:4372–4380 [CrossRef]
    [Google Scholar]
  49. West S. E., Schweizer H. P., Dall C., Sample A. K., Runyen-Janecky L. J. 1994; Construction of improved Escherichia - Pseudomonas shuttle vectors derived from pUC18/19 and sequence of the region required for their replication inPseudomonas aeruginosa . Gene 148:81–86 [CrossRef]
    [Google Scholar]
  50. Whiteley M., Lee K. M., Greenberg E. P. 1999; Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa . Proc Natl Acad Sci U S A 96:13904–13909 [CrossRef]
    [Google Scholar]
  51. Williams P., Winzer K., Chan W. C., Camara M. 2007; Look who's talking: communication and quorum sensing in the bacterial world. Philos Trans R Soc Lond B Biol Sci 362:1119–1134 [CrossRef]
    [Google Scholar]
  52. Wilson R., Pitt T., Taylor G., Watson D., MacDermot J., Sykes D., Roberts D., Cole P. 1987; Pyocyanin and 1-hydroxyphenazine produced by Pseudomonas aeruginosa inhibit the beating of human respiratory cilia in vitro. J Clin Invest 79:221–229 [CrossRef]
    [Google Scholar]
  53. Zhang Y., Wang L., Zhang S., Yang H., Tan H. 2008; hmgA , transcriptionally activated by HpdA, influences the biosynthesis of actinorhodin in Streptomyces coelicolor . FEMS Microbiol Lett 280:219–225 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.022350-0
Loading
/content/journal/jmm/10.1099/jmm.0.022350-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error