1887

Abstract

has been shown to produce more than one capsular polysaccharide (CPS). Analysis of the genome has revealed that the organism contains four CPS operons (I–IV). One of these operons (CPS III) was selected for further study. Comparative sequencing analysis revealed that the genes encoding CPS III are present in and but not in . In this study, CPS III was not found to contribute to the virulence of . Strains containing mutations in CPS III had the same LD value as the wild-type when tested in an animal infection model. Production of CPS III was shown to be induced in water but inhibited in 30 % normal human serum using a reporter fusion assay. Microarray analysis of capsule gene expression in infected hamsters revealed that the genes encoding CPS III were not significantly expressed compared with the genes encoding the previously characterized mannoheptose capsule (CPS I), which is an important virulence factor in . Glycosyl-composition analysis by combined GC/MS indicated that the CPS III genes are involved in the synthesis of a capsule composed of galactose, glucose, mannose and xylose.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.022202-0
2010-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/59/12/1403.html?itemId=/content/journal/jmm/10.1099/jmm.0.022202-0&mimeType=html&fmt=ahah

References

  1. Aldhous P. 2005; Tropical medicine: melioidosis? Never heard of it. Nature 434:692–693 [CrossRef]
    [Google Scholar]
  2. Atkins T., Prior R., Mack K., Russel P., Nelson M., Prior J., Oyston P. C., Dougan G., Titball R. W. 2002; Characterization of an acapsular mutant of Burkholderia pseudomallei identified by signature tagged mutagenesis. J Med Microbiol 51:539–547
    [Google Scholar]
  3. Bereswill S., Geider K. 1997; Characterization of the rcsB gene from Erwinia amylovora and its influence on exopolysaccharide synthesis and virulence of the fire blight pathogen. J Bacteriol 179:1354–1361
    [Google Scholar]
  4. Boulnois G. J., Roberts I. S. 1990; Genetics of capsular polysaccharide production in bacteria. Curr Top Microbiol Immunol 150:1–18
    [Google Scholar]
  5. Boyer H. W., Roulland-Dussoix D. 1969; A complementation analysis of the restriction and modification of DNA in Escherichia coli . J Mol Biol 41:459–472 [CrossRef]
    [Google Scholar]
  6. Brett P. J., Woods D. E. 1996; Structural and immunological characterization of Burkholderia pseudomallei O-polysaccharide–flagellin protein conjugates. Infect Immun 64:2824–2828
    [Google Scholar]
  7. Brett P. J., Woods D. E. 2000; Pathogenesis of and immunity to melioidosis. Acta Trop 74:201–210 [CrossRef]
    [Google Scholar]
  8. Brett P. J., DeShazer D., Woods D. E. 1997; Characterization of Burkholderia pseudomallei and Burkholderia pseudomallei -like strains. Epidemiol Infect 118:137–148 [CrossRef]
    [Google Scholar]
  9. Brett P. J., DeShazer D., Woods D. E. 1998; Burkholderia thailandensis sp. nov., description of a Burkholderia pseudomallei -like species. Int J Syst Bacteriol 48:317–320 [CrossRef]
    [Google Scholar]
  10. Bryan L. E., Wong S., Woods D. E., Dance D. A., Chaowagul W. 1994; Passive protection of diabetic rats with antisera specific for the polysaccharide portion of the lipopolysaccharide isolated from Pseudomonas pseudomallei . Can J Infect Dis 5:170–178
    [Google Scholar]
  11. Cheng A. C., Currie B. J. 2005; Melioidosis: epidemiology, pathophysiology, and management. Clin Microbiol Rev 18:383–416 [CrossRef]
    [Google Scholar]
  12. Currie B. J., Jacups S. P. 2003; Intensity of rainfall and severity of melioidosis, Australia. Emerg Infect Dis 9:1538–1542 [CrossRef]
    [Google Scholar]
  13. Currie B. J., Fisher D. A., Howard D. M., Burrow J. N., Selvanayagam S., Snelling P. L., Anstey N. M., Mayo M. J. 2000a; The epidemiology of melioidosis in Australia and Papua New Guinea. Acta Trop 74:121–127 [CrossRef]
    [Google Scholar]
  14. Currie B. J., Fisher D. A., Anstey N. M., Jacups S. P. 2000b; Melioidosis: acute and chronic disease, relapse and re-activation. Trans R Soc Trop Med Hyg 94:301–304 [CrossRef]
    [Google Scholar]
  15. Currie B. J., Jacups S. P., Cheng A. C., Fisher D. A., Anstey N. M., Huffam S. E., Krause V. L. 2004; Melioidosis epidemiology and risk factors from a prospective whole-population study in northern Australia. Trop Med Int Health 9:1167–1174 [CrossRef]
    [Google Scholar]
  16. Dance D. A. B. 1991; Melioidosis: the tip of the iceberg?. Clin Microbiol Rev 4:52–60
    [Google Scholar]
  17. de Weert S., Vermeiren H., Mulders I. H., Kuiper I., Hendrickx N., Bloemberg G. V., Vanderleyden J., De Mot R., Lugtenberg B. J. 2002; Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens . Mol Plant Microbe Interact 15:1173–1180 [CrossRef]
    [Google Scholar]
  18. DeShazer D., Woods D. E. 1999; Animal models of melioidosis. In Handbook of Animal Models of Infection pp 199–203 Edited by Zak O., Sande M. London: Academic Press;
    [Google Scholar]
  19. DeShazer D., Brett P. J., Carylon R., Woods D. E. 1997; Mutagenesis of Burkholderia pseudomallei with Tn 5 -OT182: isolation of motility mutants and molecular characterization of the flagellin structural gene. J Bacteriol 179:2116–2125
    [Google Scholar]
  20. DeShazer D., Brett P. J., Woods D. E. 1998; The type II O-antigenic polysaccharide moiety of Burkholderia pseudomallei lipopolysaccharide is required for serum resistance and virulence. Mol Microbiol 30:1081–1100 [CrossRef]
    [Google Scholar]
  21. DeShazer D., Waag D. M., Fritz D. L., Woods D. E. 2001; Identification of a Burkholderia mallei polysaccharide gene cluster by subtractive hybridization and demonstration that the encoded capsule is an essential virulence determinant. Microb Pathog 30:253–269 [CrossRef]
    [Google Scholar]
  22. Dong C., Beis K., Nesper J., Brunkan-Lamontagne A. L., Clarke B. R., Whitfield C., Naismith J. H. 2006; Wza the translocon for E. coli capsular polysaccharides defines a new class of membrane protein. Nature 444:226–229 [CrossRef]
    [Google Scholar]
  23. Figurski D. H., Helsinki D. R. 1979; Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans . Proc Natl Acad Sci U S A 76:1648–1652 [CrossRef]
    [Google Scholar]
  24. Grangeasse C., Obadia B., Mijakovic I., Deutscher J., Cozzone A. J., Doublet P. 2003; Autophosphorylation of the Escherichia coli protein kinase Wzc regulates tyrosine phosphorylation of Ugd, a UDP-glucose dehydrogenase. J Biol Chem 278:39323–39329 [CrossRef]
    [Google Scholar]
  25. Holden M. T., Titball R. W., Peacock S. J., Cerdeño-Tárraga A. M., Atkins T., Crossman L. C., Pitt T., Churcher C., Mungall K. other authors 2004; Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei . Proc Natl Acad Sci U S A 101:14240–14245 [CrossRef]
    [Google Scholar]
  26. Jensen S. O., Reeves P. R. 2001; Molecular evolution of the GDP–mannose pathway genes ( manB and manC ) in Salmonella enterica . Microbiology 147:599–610
    [Google Scholar]
  27. Kawahara K., Dejsirilert S., Ezaki T. 1998; Characterization of three capsular polysacharides produced by Burkholderia pseudomallei . FEMS Microbiol Lett 169:283–287 [CrossRef]
    [Google Scholar]
  28. Kereszt A., Kiss E., Reuhs B. L., Carlson R. W., Kondorosi A., Putnoky P. 1998; Novel rkp gene clusters of Sinorhizobium meliloti involved in capsular polysaccharide production and invasion of the symbiotic nodule: the rkpK gene encodes a UDP-glucose dehydrogenase. J Bacteriol 180:5426–5431
    [Google Scholar]
  29. Leelarasamee A., Bovornkitti S. 1989; Melioidosis: review and update. Rev Infect Dis 11:413–425 [CrossRef]
    [Google Scholar]
  30. Lescop E., Hu Y., Xu H., Hu W., Chen J., Xia B., Jin C. 2006; The solution structure of Escherichia coli Wzb reveals a novel substrate recognition mechanism of prokaryotic low molecular weight protein-tyrosine phosphatases. J Biol Chem 281:19570–19577 [CrossRef]
    [Google Scholar]
  31. Merkle R. K., Poppe I. 1994; Carbohydrate composition analysis of glycoconjugates by gas–liquid chromatography/mass spectrometry. Methods Enzymol 230:1–15
    [Google Scholar]
  32. Moore R. A., DeShazer D., Reckseidler S., Weissman A., Woods D. E. 1999; Efflux-mediated aminoglycoside and macrolide resistance in Burkholderia pseudomallei . Antimicrob Agents Chemother 43:465–470
    [Google Scholar]
  33. Moore R. A., Reckseidler-Zenteno S., Kim H., Nierman W., Yu Y., Tuanyok A., Warawa J., DeShazer D., Woods D. E. 2004; The contribution of gene loss to the pathogenic evolution of Burkholderia pseudomallei and Burkholderia mallei . Infect Immun 72:4172–4187 [CrossRef]
    [Google Scholar]
  34. Moreira L. M., Videira P. A., Sousa S. A., Leitao J. H., Cunha M. V., Sa-Correia I. 2003; Identification and physical organization of the gene cluster involved in the biosynthesis of Burkholderia cepacia complex exopolysaccharide. Biochem Biophys Res Commun 312:323–333 [CrossRef]
    [Google Scholar]
  35. Ngauy V., Lemeshev Y., Sadkowski L., Crawford G. 2005; Cutaneous melioidosis in a man who was taken as a prisoner of war by the Japanese during World War II. J Clin Microbiol 43:970–972 [CrossRef]
    [Google Scholar]
  36. Nierman W. C., DeShazer D., Kim H. S., Tettelin H., Nelson K. E., Feldblyum T., Ulrich R. L., Ronning C. M., Brinkac L. M. other authors 2004; Structural flexibility in the Burkholderia mallei genome. Proc Natl Acad Sci U S A 101:14246–14251 [CrossRef]
    [Google Scholar]
  37. Nimtz M., Wray V., Domke T., Brenneke B., Haussler S., Steinmetz I. 1997; Structure of an acidic exopolysaccharide of Burkholderia pseudomallei . Eur J Biochem 250:608–616 [CrossRef]
    [Google Scholar]
  38. Perry M. B., MacLean L. L., Schollaardt T., Bryan L. E., Ho M. 1995; Structural characterization of the lipopolysaccharide O antigens of Burkholderia pseudomallei . Infect Immun 63:3348–3352
    [Google Scholar]
  39. Raymond C. K., Sims E. H., Kas A., Spencer D. H., Kutyavin T. V., Ivey R. G., Zhou Y., Kaul R., Clendenning J. B., Olson M. V. 2002; Genetic variation at the O-antigen biosynthetic locus in Pseudomonas aeruginosa . J Bacteriol 184:3614–3622 [CrossRef]
    [Google Scholar]
  40. Reckseidler S. L., DeShazer D., Sokol P. A., Woods D. E. 2001; Detection of bacterial virulence genes by subtractive hybridization: identification of capsular polysaccharide of Burkholderia pseudomallei as a major virulence determinant. Infect Immun 69:34–44 [CrossRef]
    [Google Scholar]
  41. Reckseidler-Zenteno S. L., DeVinney R., Woods D. E. 2005; The capsular polysaccharide of Burkholderia pseudomallei contributes to survival in serum by reducing complement factor C3b deposition. Infect Immun 73:1106–1115 [CrossRef]
    [Google Scholar]
  42. Regué M., Izquierdo L., Fresno S., Piqué N., Corsaro M. M., Naldi T., De Castro C., Waidelich D., Merino S., Tomás J. M. 2005; A second outer-core region in Klebsiella pneumoniae lipopolysaccharide. J Bacteriol 187:4198–4206 [CrossRef]
    [Google Scholar]
  43. Sanford J. P. 1995; Pseudomonas species (including melioidosis and glanders. In Principles and Practice of Infectious Diseases pp 2003–2009 Edited by Mandell G. L., Douglas R. G. Jr, Bennett J. E. New York: Churchill Livingstone;
    [Google Scholar]
  44. Sarkar-Tyson M., Thwaite J. E., Harding S. V., Smither S. J., Oyston P. C. F., Atkins T. P., Titball R. W. 2007; Polysaccharides and virulence of Burkholderia pseudomallei . J Med Microbiol 56:1005–1010 [CrossRef]
    [Google Scholar]
  45. Stevenson G., Lan R., Reeves P. R. 2000; The colanic gene cluster of Salmonella enterica has a complex history. FEMS Microbiol Lett 191:11–16 [CrossRef]
    [Google Scholar]
  46. Strauss J. M., Groves M. G., Mariappan M., Ellison D. W. 1969; Melioidosis in Malaysia. II. Distribution of Pseudomonas pseudomallei in soil and surface water. Am J Trop Med Hyg 18:698–702
    [Google Scholar]
  47. Tuanyok A., Kim H. S., Nierman W. C., Yu Y., Dunbar J., Moore R. A., Baker P., Tom M., Ling J. M. L., Woods D. E. 2005; Genome-wide expression analysis of iron regulation in Burkholderia pseudomallei and Burkholderia mallei using DNA microarrays. FEMS Microbiol Lett 252:327–335 [CrossRef]
    [Google Scholar]
  48. Tuanyok A., Tom M., Dunbar J., Woods D. E. 2006; Genome-wide expression analysis of Burkholderia pseudomallei infection in a hamster model of acute melioidosis. Infect Immun 74:5465–5476 [CrossRef]
    [Google Scholar]
  49. Wang Y., Lechno-Yossef S., Gong Y., Fan Q., Wolk C. P., Xu X. 2007; Predicted glycosyl transferase genes located outside the HEP island are required for formation of heterocyst envelope polysaccharide in Anabaena sp. strain PCC 7120. J Bacteriol 189:5372–5378 [CrossRef]
    [Google Scholar]
  50. Warawa J., Woods D. E. 2002; Melioidosis vaccines. Expert Rev Vaccines 1:477–482 [CrossRef]
    [Google Scholar]
  51. Westphal O., Jann K. 1965; Extraction with phenol–water and further applications of the procedure. Methods Carbohydr Chem 25:83–91
    [Google Scholar]
  52. White N. J., Dance D. A. B., Chaowagul W., Wattanagoon Y., Wuthiekanun V., Pitakwatchara N. 1989; Halving of mortality of severe melioidosis by ceftazadime. Lancet 2:697–701
    [Google Scholar]
  53. Whitmore A., Krishnaswami C. S. 1912; An account of the discovery of a hitherto undescribed infective disease occurring among the population of Rangoon. Ind Med Gaz 47:262–267
    [Google Scholar]
  54. Wuthiekanun V., Smith M. D., Dance D. A., White N. J. 1995; Isolation of Pseudomonas pseudomallei from soil in north-eastern Thailand. Trans R Soc Trop Med Hyg 89:41–43 [CrossRef]
    [Google Scholar]
  55. Yee K. C., Lee M. K., Chua C. T., Puthucheary S. D. 1988; Melioidosis, the great mimicker: a report of 10 cases from Malaysia. J Trop Med Hyg 91:249–254
    [Google Scholar]
  56. York W. S., Darvill A. G., McNeil M., Stevenson T. T., Albersheim P. 1986; Isolation and characterization of plant cell walls and cell wall components. Methods Enzymol 118:3–40
    [Google Scholar]
  57. Yu Y., Kim H. S., Chua H. H., Lin C. H., Sim S. H., Lin D., Derr A., Engels R., DeShazer D. other authors 2006; Genomic patterns of pathogen evolution revealed by comparison of Burkholderia pseudomallei , the causative agent of melioidosis, to avirulent Burkholderia thailandensis . BMC Microbiol 6:46 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.022202-0
Loading
/content/journal/jmm/10.1099/jmm.0.022202-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error