1887

Abstract

The objective of this study was to evaluate the effect of the bacterial endotoxin LPS on biofilm formation . The effect of the LPS of , , and on six different species of , comprising ATCC 90028, ATCC 90030, ATCC 6258, ATCC 13803, ATCC 22019 and MYA 646, was studied using a standard biofilm assay. The metabolic activity of biofilms treated with LPS at 90 min, 24 h and 48 h was quantified by XTT reduction assay. Viable biofilm-forming cells were qualitatively analysed using confocal laser scanning microscopy (CLSM), while scanning electron microscopy (SEM) was employed to visualize the biofilm structure. Initially, adhesion of was significantly stimulated by and LPS. A significant inhibition of adhesion was noted for the following combinations: with LPS, with LPS, and , or with LPS (<0.05). After 24 h of incubation, a significant stimulation of initial colonization was noted for the following combinations: with LPS, with LPS. In contrast, a significant inhibition of biofilm formation was observed in with LPS, with LPS, with LPS and / with LPS (<0.05). On further incubation for 48 h, a significant enhancement of biofilm maturation was noted for the following combinations: with LPS, with LPS and with LPS, and a significant retardation was noted for with LPS, with LPS, with LPS and with LPS (<0.05). These findings were confirmed by SEM and CLSM analyses. In general, the inhibition of the biofilm development of LPS-treated spp was accompanied by a scanty architecture with a reduced numbers of cells compared with the profuse and densely colonized control biofilms. These data are indicative that bacterial LPSs modulate biofilm formation in a species-specific and time-dependent manner. The clinical and the biological relevance of these findings have yet to be explored.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.021832-0
2010-10-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/jmm/59/10/1225.html?itemId=/content/journal/jmm/10.1099/jmm.0.021832-0&mimeType=html&fmt=ahah

References

  1. Akagawa, G., Abe, S. & Yamaguchi, H. ( 1995; ). Mortality of Candida albicans-infected mice is facilitated by superinfection of Escherichia coli or administration of its lipopolysaccharide. J Infect Dis 171, 1539–1544.[CrossRef]
    [Google Scholar]
  2. Aurell, C. A. & Wistrom, A. O. ( 1998; ). Critical aggregation concentrations of gram-negative bacterial lipopolysaccharides (LPS). Biochem Biophys Res Commun 253, 119–123.[CrossRef]
    [Google Scholar]
  3. Bandara, H. M., Yau, J. Y., Watt, R. M., Jin, L. J. & Samaranayake, L. P. ( 2009; ). Escherichia coli and its lipopolysaccharide modulate in vitro Candida biofilm formation. J Med Microbiol 58, 1623–1631.[CrossRef]
    [Google Scholar]
  4. Burd, R. S., Raymond, C. S. & Dunn, D. L. ( 1992; ). Endotoxin promotes synergistic lethality during concurrent Escherichia coli and Candida albicans infection. J Surg Res 52, 537–542.[CrossRef]
    [Google Scholar]
  5. Charles, P. E., Doise, J. M., Quenot, J. P., Aube, H., Dalle, F., Chavanet, P., Milesi, N., Aho, L. S., Portier, H. & Blettery, B. ( 2003; ). Candidemia in critically ill patients: difference of outcome between medical and surgical patients. Intensive Care Med 29, 2162–2169.[CrossRef]
    [Google Scholar]
  6. Eubanks, P. J., de Virgilio, C., Klein, S. & Bongard, F. ( 1993; ). Candida sepsis in surgical patients. Am J Surg 166, 617–619.[CrossRef]
    [Google Scholar]
  7. Hedderwick, S. A., Lyons, M. J., Liu, M., Vazquez, J. A. & Kauffman, C. A. ( 2000; ). Epidemiology of yeast colonization in the intensive care unit. Eur J Clin Microbiol Infect Dis 19, 663–670.[CrossRef]
    [Google Scholar]
  8. Henry-Stanley, M. J., Hess, D. J., Erickson, E. A., Garni, R. M. & Wells, C. L. ( 2003; ). Effect of lipopolysaccharide on virulence of intestinal Candida albicans. J Surg Res 113, 42–49.[CrossRef]
    [Google Scholar]
  9. Hess, D. J., Henry-Stanley, M. J., Bendel, C. M., Zhang, B., Johnson, M. A. & Wells, C. L. ( 2009; ). Escherichia coli and TNF-α modulate macrophage phagocytosis of Candida glabrata. J Surg Res 155, 217–224.[CrossRef]
    [Google Scholar]
  10. Jenkinson, H. F. & Douglas, L. J. ( 2002; ). Interactions between Candida species and bacteria in mixed infections. In Polymicrobial Diseases, pp. 357–373. Edited by Brogden, K. A. & Guthmiller, J. M.. Washington, DC. : American Society for Microbiology.
    [Google Scholar]
  11. Jin, Y., Samaranayake, L. P., Samaranayake, Y. & Yip, H. K. ( 2004; ). Biofilm formation of Candida albicans is variably affected by saliva and dietary sugars. Arch Oral Biol 49, 789–798.[CrossRef]
    [Google Scholar]
  12. Jin, Y., Zhang, T., Samaranayake, Y. H., Fang, H. H., Yip, H. K. & Samaranayake, L. P. ( 2005; ). The use of new probes and stains for improved assessment of cell viability and extracellular polymeric substances in Candida albicans biofilms. Mycopathologia 159, 353–360.[CrossRef]
    [Google Scholar]
  13. Klaerner, H. G., Uknis, M. E., Acton, R. D., Dahlberg, P. S., Carlone-Jambor, C. & Dunn, D. L. ( 1997; ). Candida albicans and Escherichia coli are synergistic pathogens during experimental microbial peritonitis. J Surg Res 70, 161–165.[CrossRef]
    [Google Scholar]
  14. Luchi, M. & Morrison, D. C. ( 2000; ). Comparable endotoxic properties of lipopolysaccharides are manifest in diverse clinical isolates of gram-negative bacteria. Infect Immun 68, 1899–1904.[CrossRef]
    [Google Scholar]
  15. Mah, T. F. & O'Toole, G. A. ( 2001; ). Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9, 34–39.[CrossRef]
    [Google Scholar]
  16. Makin, S. A. & Beveridge, T. J. ( 1996; ). Pseudomonas aeruginosa PAO1 ceases to express serotype-specific lipopolysaccharide at 45 °C. J Bacteriol 178, 3350–3352.
    [Google Scholar]
  17. McLean, R. J. C., Bates, C. L., Banes, M. B., McGowin, C. L. & Aron, G. M. ( 2004; ). Methods of studying biofilms. In Microbial Biofilms, pp. 279–413. Edited by Ghannoum, M. & O'Toole, G.. Washington, DC. : American Society for Microbiology.
    [Google Scholar]
  18. Michalek, S. M., Moore, R. N., McGhee, J. R., Rosenstreich, D. L. & Mergenhagen, S. E. ( 1980; ). The primary role of lymphoreticular cells in the mediation of host responses to bacterial endotoxin. J Infect Dis 141, 55–63.[CrossRef]
    [Google Scholar]
  19. Morrison, D. C. & Leive, L. ( 1975; ). Fractions of lipopolysaccharide from Escherichia coli O111 : B4 prepared by two extraction procedures. J Biol Chem 250, 2911–2919.
    [Google Scholar]
  20. Morrison, D. C. & Ryan, J. L. ( 1987; ). Endotoxins and disease mechanisms. Annu Rev Med 38, 417–432.[CrossRef]
    [Google Scholar]
  21. Morrison, D. C., Betz, S. J. & Jacobs, D. M. ( 1976; ). Isolation of a lipid A bound polypeptide responsible for “LPS-initiated” mitogenesis of C3H/HeJ spleen cells. J Exp Med 144, 840–846.[CrossRef]
    [Google Scholar]
  22. Morrison, D. C., Vukajlovich, S. W., Ryan, J. L. & Levin, J. ( 1987; ). Structural requirements for gelation of the Limulus amebocyte lysate by endotoxin. Prog Clin Biol Res 231, 55–73.
    [Google Scholar]
  23. Nobile, C. J. & Mitchell, A. P. ( 2007; ). Microbial biofilms: e pluribus unum. Curr Biol 17, R349–R353.[CrossRef]
    [Google Scholar]
  24. Odds, F. C. ( 1988; ). Candida and Candidosis, 2nd edn. London. : Baillière Tindall.
    [Google Scholar]
  25. O'Toole, G., Kaplan, H. B. & Kolter, R. ( 2000; ). Biofilm formation as microbial development. Annu Rev Microbiol 54, 49–79.[CrossRef]
    [Google Scholar]
  26. Palma, C., Cassone, A., Serbousek, D., Pearson, C. A. & Djeu, J. Y. ( 1992; ). Lactoferrin release and interleukin-1, interleukin-6, and tumor necrosis factor production by human polymorphonuclear cells stimulated by various lipopolysaccharides: relationship to growth inhibition of Candida albicans. Infect Immun 60, 4604–4611.
    [Google Scholar]
  27. Pappas, P. G., Rex, J. H., Lee, J., Hamill, R. J., Larsen, R. A., Powderly, W., Kauffman, C. A., Hyslop, N., Mangino, J. E. & other authors ( 2003; ). A prospective observational study of candidemia: epidemiology, therapy, and influences on mortality in hospitalized adult and pediatric patients. Clin Infect Dis 37, 634–643.[CrossRef]
    [Google Scholar]
  28. Peres-Bota, D., Rodriguez-Villalobos, H., Dimopoulos, G., Melot, C. & Vincent, J. L. ( 2004; ). Potential risk factors for infection with Candida spp. in critically ill patients. Clin Microbiol Infect 10, 550–555.[CrossRef]
    [Google Scholar]
  29. Pfaller, M. A. ( 1996; ). Nosocomial candidiasis: emerging species, reservoirs, and modes of transmission. Clin Infect Dis 22, S89–S94.[CrossRef]
    [Google Scholar]
  30. Pittet, D. & Wenzel, R. P. ( 1995; ). Nosocomial bloodstream infections: secular trends in rates, mortality, and contribution to total hospital deaths. Arch Intern Med 155, 1177–1184.[CrossRef]
    [Google Scholar]
  31. Ramage, G., VandeWalle, K., Wickes, B. L. & López-Ribot, J. L. ( 2001; ). Characteristics of biofilm formation by Candida albicans. Rev Iberoam Micol 18, 163–170.
    [Google Scholar]
  32. Rangel-Frausto, M. S. ( 1999; ). The epidemiology of bacterial sepsis. Infect Dis Clin North Am 13, 299–312.[CrossRef]
    [Google Scholar]
  33. Rangel-Frausto, M. S., Wiblin, T., Blumberg, H. M., Saiman, L., Patterson, J., Rinaldi, M., Pfaller, M., Edwards, J. E., Jr, Jarvis, W. & other authors ( 1999; ). National epidemiology of mycoses survey (NEMIS): variations in rates of bloodstream infections due to Candida species in seven surgical intensive care units and six neonatal intensive care units. Clin Infect Dis 29, 253–258.[CrossRef]
    [Google Scholar]
  34. Richards, M. J., Edwards, J. R., Culver, D. H. & Gaynes, R. P. ( 1999; ). Nosocomial infections in medical intensive care units in the United States. Crit Care Med 27, 887–892.[CrossRef]
    [Google Scholar]
  35. Rietschel, E. T., Schade, U., Jensen, M., Wollenweber, H. W., Luderitz, O. & Greisman, S. G. ( 1982; ). Bacterial endotoxins: chemical structure, biological activity and role in septicaemia. Scand J Infect Dis Suppl 31, 8–21.
    [Google Scholar]
  36. Sabra, W., Lunsdorf, H. & Zeng, A. P. ( 2003; ). Alterations in the formation of lipopolysaccharide and membrane vesicles on the surface of Pseudomonas aeruginosa PAO1 under oxygen stress conditions. Microbiology 149, 2789–2795.[CrossRef]
    [Google Scholar]
  37. Samaranayake, L. P. & MacFarlane, T. W. ( 1990; ). Oral Candidosis. London. : Wright.
    [Google Scholar]
  38. Snydman, D. R. ( 2003; ). Shifting patterns in the epidemiology of nosocomial Candida infections. Chest 123, 500S–503S.[CrossRef]
    [Google Scholar]
  39. Tracey, K. J., Fong, Y., Hesse, D. G., Manogue, K. R., Lee, A. T., Kuo, G. C., Lowry, S. F. & Cerami, A. ( 1987; ). Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature 330, 662–664.[CrossRef]
    [Google Scholar]
  40. Vukajlovich, S. W. & Morrison, D. C. ( 1985; ). Activation of murine spleen cells by lipid A: negative modulation of lipid A mitogenic activity by O-antigen polysaccharide. J Immunol 135, 2546–2550.
    [Google Scholar]
  41. Wisplinghoff, H., Bischoff, T., Tallent, S. M., Seifert, H., Wenzel, R. P. & Edmond, M. B. ( 2004; ). Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 39, 309–317.[CrossRef]
    [Google Scholar]
  42. Young, L. ( 1985; ). Gram negative sepsis. In Principles and Practice of Infectious Diseases, pp. 452–476. Edited by Mandell, G. L., Douglas, R. G. & Bennet, J. E.. New York. : Wiley.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.021832-0
Loading
/content/journal/jmm/10.1099/jmm.0.021832-0
Loading

Data & Media loading...

Supplements

vol. , part 10, pp. 1225 - 1234

[ PDF file] (31 KB)

The mean XTT readings of LPS-treated and control spp. biofilms at different time intervals.



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error