Evaluation of a liquid bead array system for high-risk human papillomavirus detection and genotyping in comparison with Hybrid Capture II, DNA chip and sequencing methods Free

Abstract

Since persistent infection with high-risk human papillomavirus (HPV) is a known cause of high-grade cervical intraepithelial neoplasia and cervical cancer, several HPV DNA detection methods have been developed during the last decade. The Hybrid Capture II (HCII) assay, which allows detection of 13 high-risk HPVs, has been well validated; however, it does not provide any genotype-specific information. The oncogenic activity of HPV is dependent on its genotype. The prophylactic effects of HPV vaccines are based on L1 virus-like particles and are limited mainly to infections corresponding to the HPV type used to develop the immunogen. Therefore, accurate detection and genotyping are important for treatment as well as screening. A newly developed HPV genotyping system using a liquid bead array was evaluated with 286 cervical samples and the results were compared to two commercially available methods, i.e. the HCII and HPV DNA chip assays, and sequencing. The sensitivity for detection of high-risk HPV was 85.3 % (HCII), 94.7 % (DNA chip) and 99.0 % (liquid bead array). The liquid bead array showed almost perfect agreement (=0.95) with genotype information confirmed by sequencing, while substantial agreement (=0.8) was observed between DNA chip and sequencing. Furthermore, the liquid bead array had superior detection of 26 HPVs (16 high-risk and 10 low-risk types) and has proven to be as accurate as sequencing in identifying individual HPV types, even in cases with multiple HPV infections.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.021642-0
2011-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/60/2/162.html?itemId=/content/journal/jmm/10.1099/jmm.0.021642-0&mimeType=html&fmt=ahah

References

  1. Bhatla N., Moda N. 2009; The clinical utility of HPV DNA testing in cervical cancer screening strategies. Indian J Med Res 130:261–265
    [Google Scholar]
  2. Coutlée F., Rouleau D., Ferenczy A., Franco E. 2005; The laboratory diagnosis of genital human papillomavirus infections. Can J Infect Dis Med Microbiol 16:83–91
    [Google Scholar]
  3. Coutlée F., Mayrand M., Roger M., Franco E. L. 2009; Detection and typing of human papillomavirus nucleic acids in biological fluids. Public Health Genomics 12:308–318 [CrossRef]
    [Google Scholar]
  4. Geraets D. T., Heideman D. A. M., De Koning M. N. C., Snijders P. J. F., Van Alewijk D. C. J. G., Meijer C. J. L. M., Van Doorn L. J., Quint W. G. V. 2009; High-throughput genotyping of high-risk HPV by the digene HPV genotyping LQ test using GP5+/6+-PCR and xMAP technology. J Clin Virol 46:S21–S26
    [Google Scholar]
  5. Gillio-Tos A., De-Marco L., Ghisetti V., Snijders P. J., Segnan N., Ronco G., Merletti F. 2006; Human papillomavirus typing with GP5+/6+ polymerase chain reaction reverse line blotting and with commercial type-specific PCR kits. J Clin Virol 36:126–132 [CrossRef]
    [Google Scholar]
  6. Gravitt P. E., Peyton C. L., Alessi T. Q., Wheeler C. M., Coutlée F., Hildesheim A., Schiffman M. H., Scott D. R., Apple R. J. 2000; Improved amplification of genital human papillomaviruses. J Clin Microbiol 38:357–361
    [Google Scholar]
  7. Han J., Swan D. C., Smith S. J., Lum S. H., Sefers S. E., Unger E. R., Tang Y.-W. 2006; Simultaneous amplification and identification of 25 human papillomavirus types with Templex technology. J Clin Microbiol 44:4157–4162 [CrossRef]
    [Google Scholar]
  8. Harper D. M., Franco E. L., Wheeler C. M., Moscicki A. B., Romanowski B., Roteli-Martins C. M., Jenkins D., Schuind A., Costa Clemens S. A., Dubin G. 2006; Sustained efficacy up to 4.5 years of a bivalent L1 virus-like particle vaccine against human papillomavirus types 16 and 18: follow-up from a randomized control trial. Lancet 367:1247–1255 [CrossRef]
    [Google Scholar]
  9. Hesselink A. T., Bulkmans N. W. J., Berkhof J., Lorincz A. T., Meijer C. J. L. M., Snijders P. J. F. 2006; Cross-sectional comparison of an automated hybrid capture 2 assay and the consensus GP5+/6+ PCR method in a population-based cervical screening program. J Clin Microbiol 44:3680–3685 [CrossRef]
    [Google Scholar]
  10. Jiang H. L., Zhu H. H., Zhou L. F., Chen F., Chen Z. 2006; Genotyping of human papillomavirus in cervical lesions by L1 consensus PCR and the Luminex xMAP system. J Med Microbiol 55:715–720 [CrossRef]
    [Google Scholar]
  11. Kawana K., Yasugi T., Taketani Y. 2009; Human papillomavirus vaccines: current issues & future. Indian J Med Res 130:341–347
    [Google Scholar]
  12. Meijer C. J., Snijders P. J., Castle P. E. 2006; Clinical utility of HPV genotyping. Gynecol Oncol 103:12–17 [CrossRef]
    [Google Scholar]
  13. Muñoz N., Bosch F. X., De Sanjosé S., Herrero R., Castellsagué X., Shah K. V., Snijders P. J. F., Meijer C. J. L. M. International Agency for Research on Cancer Multicenter Cervical Cancer Study Group; 2003; Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med 348:518–527 [CrossRef]
    [Google Scholar]
  14. Ochi H., Kondo K., Matsumoto K., Oki A., Yasugi T., Furuta R., Hirai Y., Yoshikawa H., Kanda T. 2008; Neutralizing antibodies against human papillomavirus types 16, 18, 31, 52, and 58 in serum samples from women in Japan with low-grade cervical intraepithelial neoplasia. Clin Vaccine Immunol 15:1536–1540 [CrossRef]
    [Google Scholar]
  15. Oh Y., Bae S. M., Kim Y.-W., Choi H.-S., Nam G.-H., Han S.-J., Park C. H., Cho Y., Han B.-D., Ahn W. S. 2007; Polymerase chain reaction-based fluorescent Luminex assay to detect the presence of human papillomavirus types. Cancer Sci 98:549–554 [CrossRef]
    [Google Scholar]
  16. Remmerbach T. W., Brinckmann U. G., Hemprich A., Chekol M., Kühndel K., Liebert U. G. 2004; PCR detection of human papillomavirus of the mucosa: comparison between MY09/11 and GP5+/6+ primer sets. J Clin Virol 30:302–308 [CrossRef]
    [Google Scholar]
  17. Schmitt M., Bravo I. G., Snijders P. J., Gissmann L., Pawlita M., Waterboer T. 2006; Bead-based multiplex genotyping of human papillomaviruses. J Clin Microbiol 44:504–512 [CrossRef]
    [Google Scholar]
  18. Van Doorn L.-J., Quint W., Kleter B., Molijn A., Colau B., Martin M. T., Kravang-In Torrez-Martinez N., Peyton L., Wheeler C. M. 2002; Genotyping of human papillomavirus in liquid cytology cervical specimens by the PGMY line blot assay and the SPF10 line probe assay. J Clin Microbiol 40:979–983 [CrossRef]
    [Google Scholar]
  19. Villa L. L., Ault K. A., Giuliano A. R., Costa R. L., Petta C. A., Andrade R. P., Brown D. R., Ferenczy A., Harper D. M., other authors C. 2006; Immunologic responses following administration of a vaccine targeting human papillomavirus types 6/11/16, and 18. Vaccine 24:5571–5583 [CrossRef]
    [Google Scholar]
  20. Wallace J., Woda B. A., Pihan G. 2005; Facile, comprehensive, high-throughput genotyping of human genital papillomaviruses using spectrally addressable liquid bead microarrays. J Mol Diagn 7:72–80 [CrossRef]
    [Google Scholar]
  21. Winder D. M., Ball S. L. R., Vaughan K., Hanna N., Woo Y. L., Fränzer J., Sterling J. C., Stanley M. A., Sudhoff H., Goon P. K. C. 2009; Sensitive HPV detection in oropharyngeal cancers. BMC Cancer 9:440 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.021642-0
Loading
/content/journal/jmm/10.1099/jmm.0.021642-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed