Mechanisms behind variation in the 16S–23S rRNA intergenic spacer region Free

Abstract

infection is an increasing problem in hospitals worldwide, mainly due to the recent emergence of a hypervirulent strain. PCR ribotyping, based on size variation of the 16S–23S rRNA intergenic spacer region (16S–23S ISR), is widely used in Europe for molecular epidemiological investigation. The mechanism underlying the 16S–23S ISR size variations in the genome of is currently not completely understood. To elucidate this mechanism, isolates of six different PCR ribotypes were analysed by cloning and sequencing the 16S–23S ISR. A direct repeat, IB, of 9 bp was detected up to five times in the 16S–23S ISR in all 47 clones investigated. Thirty-five clones displayed differences either by ribotype or by nucleotide sequence. The sequences of the 16S–23S ISR of showed a uniformly organized structure, composed of a tRNA gene and spacers of 33 and 53 bp separated by the 9 bp direct repeat IB. The results of the study support the hypothesis that this composition is responsible for the length variations seen in the 16S–23S ISR, and indicate that these length variations result from slipped-strand mispairing and intra- and possibly interchromosomal homologous recombination.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.020792-0
2010-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/59/11/1317.html?itemId=/content/journal/jmm/10.1099/jmm.0.020792-0&mimeType=html&fmt=ahah

References

  1. Bidet P., Barbut F., Lalande V., Burghoffer B., Petit J. C. 1999; Development of a new PCR-ribotyping method for Clostridium difficile based on ribosomal RNA gene sequencing. FEMS Microbiol Lett 175:261–266 [CrossRef]
    [Google Scholar]
  2. Brígido M. D. M., Barardi C. R. M., Bonjardin C. A., Santos C. L. S., Junqueira M. D. L., Brentani R. R. 1991; Nucleotide sequence of a variant protein A of Staphylococcus aureus suggests molecular heterogeneity among strains. J Basic Microbiol 31:337–345 [CrossRef]
    [Google Scholar]
  3. Debast S. B., van Leengoed L. A., Goorhuis A., Harmanus C., Kuijper E. J., Bergwerff A. A. 2009; Clostridium difficile PCR ribotype 078 toxinotype V found in diarrhoeal pigs identical to isolates from affected humans. Environ Microbiol 11:505–511 [CrossRef]
    [Google Scholar]
  4. Deurenberg R. H., Vink C., Kalenic S., Friedrich A. W., Bruggeman C. A., Stobberingh E. E. 2007; The molecular evolution of methicillin-resistant Staphylococcus aureus . Clin Microbiol Infect 13:222–235 [CrossRef]
    [Google Scholar]
  5. Faria N. A., Carrico J. A., Oliveira D. C., Ramirez M., de Lencastre H. 2008; Analysis of typing methods for epidemiological surveillance of both methicillin-resistant and methicillin-susceptible Staphylococcus aureus strains. J Clin Microbiol 46:136–144 [CrossRef]
    [Google Scholar]
  6. Goorhuis A., Bakker D., Corver J., Debast S. B., Harmanus C., Notermans D. W., Bergwerff A. A., Dekker F. W., Kuijper E. J. 2008; Emergence of Clostridium difficile infection due to a new hypervirulent strain, polymerase chain reaction ribotype 078. Clin Infect Dis 47:1162–1170 [CrossRef]
    [Google Scholar]
  7. Gürtler V. 1999; The role of recombination and mutation in 16S–23S rDNA spacer rearrangements. Gene 238:241–252 [CrossRef]
    [Google Scholar]
  8. Hanekom M., van der Spuy G. D., Gey van Pittius N. C., McEvoy C. R., Hoek K. G., Ndabambi S. L., Jordaan A. M., Victor T. C., van Helden P. D., Warren R. M. 2008; Discordance between MIRU-VNTR and IS 6110 RFLP genotyping when analyzing Mycobacterium tuberculosis Beijing strains in a high incidence setting. J Clin Microbiol 46:3338–3345 [CrossRef]
    [Google Scholar]
  9. Indra A., Huhulescu S., Schneeweis M., Hasenberger P., Kernbichler S., Fiedler A., Wewalka G., Allerberger F., Kuijper E. J. 2008; Characterization of Clostridium difficile isolates using capillary gel electrophoresis-based PCR ribotyping. J Med Microbiol 57:1377–1382 [CrossRef]
    [Google Scholar]
  10. Killgore G., Thompson A., Johnson S., Brazier J., Kuijper E., Pepin J., Frost E. H., Savelkoul P., Nicholson B. other authors 2008; Comparison of seven techniques for typing international epidemic strains of Clostridium difficile : restriction endonuclease analysis, pulsed-field gel electrophoresis, PCR-ribotyping, multilocus sequence typing, multilocus variable-number tandem-repeat analysis, amplified fragment length polymorphism, and surface layer protein A gene sequence typing. J Clin Microbiol 46:431–437 [CrossRef]
    [Google Scholar]
  11. Kuijper E. J., Barbut F., Brazier J. S., Kleinkauf N., Eckmanns T., Lambert M. L., Drudy D., Fitzpatrick F., Wiuff C. other authors 2008; Update of Clostridium difficile infection due to PCR ribotype 027 in Europe, 2008. Euro Surveill 13:1–7
    [Google Scholar]
  12. Levinson G., Gutman G. A. 1987; Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol 4:203–221
    [Google Scholar]
  13. Nicholas K. B., Nicholas H. B. Jr, Deerfield D. W. II 1997; GeneDoc: analysis and visualization of genetic variation. EMBnet News 4:21–4 http://www.nrbsc.org/gfx/genedoc/ebinet.htm
    [Google Scholar]
  14. Pépin J., Valiquette L., Alary M., Villemure P., Pelletier A., Forget K., Pépin K., Chouinard D. 2004; Clostridium difficile -associated diarrhea in a region of Quebec from 1991 to 2003: a changing pattern of disease severity. CMAJ 171:466–472 [CrossRef]
    [Google Scholar]
  15. Petit M. 2005; Mechanisms of homologous recombination in bacteria. In The Dynamic Bacterial Genome pp 3–32 Edited by Mullany P. New York: Cambridge University Press;
    [Google Scholar]
  16. Ragon M., Wirth T., Hollandt F., Lavenir R., Lecuit M., Le Monnier A., Brisse S. 2008; A new perspective on Listeria monocytogenes evolution. PLoS Pathog 4:e1000146 [CrossRef]
    [Google Scholar]
  17. Reiter W. D., Palm P., Yeats S. 1989; Transfer RNA genes frequently serve as integration sites for prokaryotic genetic elements. Nucleic Acids Res 17:1907–1914 [CrossRef]
    [Google Scholar]
  18. Sadeghifard N., Gürtler V., Beer M., Seviour R. J. 2006; The mosaic nature of intergenic 16S–23S rRNA spacer regions suggests rRNA operon copy number variation in Clostridium difficile strains. Appl Environ Microbiol 72:7311–7323 [CrossRef]
    [Google Scholar]
  19. Sebaihia M., Wren B. W., Mullany P., Fairweather N. F., Minton N., Stabler R., Thomson N. R., Roberts A. P., Cerdeño-Tárraga A. M. other authors 2006; The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat Genet 38:779–786 [CrossRef]
    [Google Scholar]
  20. Stubbs S. L., Brazier J. S., O'Neill G. L., Duerden B. I. 1999; PCR targeted to the 16S–23S rRNA gene intergenic spacer region of Clostridium difficile and construction of a library consisting of 116 different PCR ribotypes. J Clin Microbiol 37:461–463
    [Google Scholar]
  21. van Belkum A. 1999; The role of short sequence repeats in epidemiologic typing. Curr Opin Microbiol 2:306–311 [CrossRef]
    [Google Scholar]
  22. Zaiss N. H., Rupnik M., Kuijper E. J., Harmanus C., Michielsen D., Janssens K., Nübel U. 2009; Typing Clostridium difficile strains based on tandem repeat sequences. BMC Microbiol 9:6 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.020792-0
Loading
/content/journal/jmm/10.1099/jmm.0.020792-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed