1887

Abstract

The intracellular Gram-negative pathogen is the causative agent of tularaemia and is prevalent in many countries in the northern hemisphere. To determine whether the common marmoset () would be a suitable non-human primate model of inhalational tularaemia, a pathophysiology study was undertaken. Ten animals were challenged with ∼10 c.f.u. strain SCHU S4 ( subsp. ). To look for trends in the infection, pairs of animals were sacrificed at 24 h intervals between 0 and 96 h post-challenge and blood and organs were assessed for bacteriology, pathology and haematological and immunological parameters. The first indication of infection was a raised core temperature at 3 days post-challenge. This coincided with a number of other factors: a rapid increase in the number of bacteria isolated from all organs, more pronounced gross pathology and histopathology, and an increase in the immunological response. As the disease progressed, higher bacterial and cytokine levels were detected. More extensive pathology was observed, with multifocal lesions seen in the lungs, liver and spleen. Disease progression in the common marmoset appears to be consistent with human clinical and pathological features of tularaemia, indicating that this may be a suitable animal model for the investigation of novel medical interventions such as vaccines or therapeutics.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.020669-0
2010-09-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jmm/59/9/1107.html?itemId=/content/journal/jmm/10.1099/jmm.0.020669-0&mimeType=html&fmt=ahah

References

  1. Avery F. W., Barnett T. B. 1967; Pulmonary tularemia. A report of five cases and consideration of pathogenesis and terminology. Am Rev Respir Dis 95:584–591
    [Google Scholar]
  2. Brok H. P. M., Hornby R. J., Griffiths G. D., Scott L. A. M., Hart B. A. 2001; An extensive monoclonal antibody panel for the phenotyping of leukocyte subsets in the common marmoset and the cotton-top tamarin. Cytometry 45:294–303 [CrossRef]
    [Google Scholar]
  3. Conlan J. W., Chen W., Shen H., Webb A., KuoLee R. 2003; Experimental tularemia in mice challenged by aerosol or intradermally with virulent strains of Francisella tularensis : bacteriologic and histopathologic studies. Microb Pathog 34:239–248 [CrossRef]
    [Google Scholar]
  4. Conlan J. W., Zhao X., Harris G., Shen H., Bolanowski M., Rietz C., Sjostedt A., Chen W. 2008; Molecular immunology of experimental primary tularemia in mice infected by respiratory or intradermal routes with type A Francisella tularensis . Mol Immunol 45:2962–2969 [CrossRef]
    [Google Scholar]
  5. Dennis D. T., Inglesby T. V., Henderson D. A., Bartlett J. G., Ascher M. S., Eitzen E., Fine A. D., Friedlander A. M., Hauer J. other authors 2001; Tularemia as a biological weapon – medical and public health management. JAMA 285:2763–2773 [CrossRef]
    [Google Scholar]
  6. Druett H. A. 1969; A mobile form of the Henderson apparatus. J Hyg (Lond) 67:437–448 [CrossRef]
    [Google Scholar]
  7. Ellis J., Oyston P. C. F., Green M., Titball R. W. 2002; Tularemia. Clin Microbiol Rev 15:631–646 [CrossRef]
    [Google Scholar]
  8. Evans M. E., Gregory D. W., Schaffner W., McGee Z. A. 1985; Tularemia: a 30-year experience with 88 cases. Medicine (Baltimore 64:251–269
    [Google Scholar]
  9. Gill V., Cunha B. A. 1997; Tularemia pneumonia. Semin Respir Infect 12:61–67
    [Google Scholar]
  10. Green M., Choules G., Rogers D., Titball R. W. 2005; Efficacy of the live attenuated Francisella tularensis vaccine (LVS) in a murine model of disease. Vaccine 23:2680–2686 [CrossRef]
    [Google Scholar]
  11. Hall J. D., Woolard M. D., Gunn B. M., Craven R. R., Taft-Benz S., Frelinger J. A., Kawula T. H. 2008; Infected-host-cell repertoire and cellular response in the lung following inhalation of Francisella tularensis Schu S4, LVS, or U112. Infect Immun 76:5843–5852 [CrossRef]
    [Google Scholar]
  12. Herodin F., Thullier P., Garin D., Drouet M. 2005; Nonhuman primates are relevant models for research in haematology, immunology and virology. Eur Cytokine Netw 16:104–116
    [Google Scholar]
  13. Kaiser A. B., Rieves D., Price A. H., Gelfand M. R., Parrish R. E., Decker M. D., Evans M. E. 1985; Tularemia and rhabdomyolysis. JAMA 253:241–243 [CrossRef]
    [Google Scholar]
  14. Kroca M., Tärnvik A., Sjöstedt A. 2000; The proportion of circulating γδ T cells increases after the first week of onset of tularaemia and remains elevated for more than a year. Clin Exp Immunol 120:280–284 [CrossRef]
    [Google Scholar]
  15. Lever M. S., Stagg A. J., Nelson M., Pearce P., Stevens D. J., Scott E. A. M., Simpson A. J. H., Fulop M. J. 2008; Experimental respiratory anthrax infection in the common marmoset ( Callithrix jacchus ). Int J Exp Pathol 89:171–179 [CrossRef]
    [Google Scholar]
  16. Martin G. J., Marty A. M. 2001; Clinicopathologic aspects of bacterial agents. Clin Lab Med 21:513–548
    [Google Scholar]
  17. Nelson M., Lever M. S., Savage V. L., Salguero F. J., Pearce P. C., Stevens D. J., Simpson A. J. H. 2009; Establishment of lethal inhalational infection with Francisella tularensis (tularemia) in the common marmoset ( Callithrix jacchus ). Int J Exp Pathol 90:109–118 [CrossRef]
    [Google Scholar]
  18. Poquet Y., Kroca M., Halary F., Stenmark S., Peyrat M.-A., Bonneville M., Fournié J. J., Sjöstedt A. 1998; Expansion of V γ 9V δ 2 T cells is triggered by Francisella tularensis -derived phosphoantigens in tularemia but not after tularemia vaccination. Infect Immun 66:2107–2114
    [Google Scholar]
  19. Posthaus H., Welle M., Morner T., Nicolet J., Kuhnert P. 1998; Tularemia in a common marmoset ( Callithrix jacchus ) diagnosed by 16S rRNA sequencing. Vet Microbiol 61:145–150 [CrossRef]
    [Google Scholar]
  20. Saslaw S., Eigelsbach H. T., Prior J. A., Wilson H. E., Carhart S. 1961; Tularemia vaccine study. II. Respiratory challenge. Arch Intern Med 107:702–714 [CrossRef]
    [Google Scholar]
  21. Sjöstedt A., Conlan J. W., North R. J. 1994; Neutrophils are critical for host defense against primary infection with the facultative intracellular bacterium Francisella tularensis in mice and participate in defense against reinfection. Infect Immun 62:2779–2783
    [Google Scholar]
  22. Splettstoesser W. D., Mätz-Rensing K., Seibold E., Tomaso H., Al Dahouk S., Grunow R., Essbauer S., Buckendahl A., Finke E.-J., Neubauer H. 2007; Re-emergence of Francisella tularensis in Germany: fatal tularaemia in a colony of semi-free-living marmosets ( Callithrix jacchus ). Epidemiol Infect 135:1256–1265
    [Google Scholar]
  23. Sumida T., Maeda T., Takahashi H., Yoshida S., Yonaha F., Sakamoto A., Tomioka H., Koike T. 1992; Predominant expansion of V γ 9/V δ 2 T cells in a tularemia patient. Infect Immun 60:2554–2558
    [Google Scholar]
  24. Syrjala H., Sutinene S., Jokinen K., Nieminen P., Tuuponen T., Salminen A. 1986; Bronchial changes in airborne tularemia. J Laryngol Otol 100:1169–1176 [CrossRef]
    [Google Scholar]
  25. Yarbrough L. W., Tollett J. L., Montrey R. D., Beattie R. J. 1984; Serum biochemical, hematological and body measurement data for common marmosets ( Callithrix jacchus jacchus ). Lab Anim Sci 34:276–280
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.020669-0
Loading
/content/journal/jmm/10.1099/jmm.0.020669-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error