1887

Abstract

The aim of this study was to determine the time to positivity (TTP) of neonatal blood cultures, to investigate differences between early onset versus late-onset sepsis, and non-proven versus proven sepsis, and to examine differences in TTP by organism type using a retrospective observational study at the Neonatal Intensive Care Unit, Antwerp University Hospital, Belgium. The subjects were 1828 neonates with suspected sepsis who were treated with antimicrobials for at least 3 days. The TTP was recorded for all episodes of suspected sepsis in an approximately 6.5 year period. A total of 2916 blood cultures were collected, of which 437 (15 %) became positive. The overall TTP was 21.33 h (Q–Q 13.17–32.46). The difference between the median TTP in early onset versus late-onset sepsis was 0.83 h (22.00 versus 21.17 h, =0.75). The median TTP for Gram-negative organisms was 11.17 h (Q–Q 8.84–15.67), whereas the median TTP for Gram-positive organisms was 23.59 h (Q–Q 15.29–34.58, <0.001). In Gram-positive isolates, the median TTP for coagulase-negative staphylococci (CNS) was 26.67 h (Q–Q 19.00–38.17), whereas the median TTP for non-CNS was 12.83 h (Q–Q 10.50–18.17, <0.001). The median TTP in proven sepsis was 20.17 h (Q–Q 13.00–30.37), whereas it was 29.67 h (Q–Q 21.17–50.63, <0.001) in non-proven sepsis. TTP of neonatal blood cultures was significantly shorter for Gram-negative organisms. We suggest shortening the total incubation time of neonatal blood cultures to a maximum of 3 days. However, blood cultures collected in infants <72 h of age might require a longer incubation time. According to our results, it may be safe to narrow the antimicrobial spectrum to solely target Gram-positive bacteria when the culture is still negative after 48 h, and to cease antimicrobial therapy when the culture is still negative after 72 h in clinically well infants.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.020651-0
2011-04-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/jmm/60/4/446.html?itemId=/content/journal/jmm/10.1099/jmm.0.020651-0&mimeType=html&fmt=ahah

References

  1. Bizzarro, M. J., Raskind, C., Baltimore, R. S. & Gallagher, P. G. ( 2005; ). Seventy-five years of neonatal sepsis at Yale: 1928–2003. Pediatrics 116, 595–602.[CrossRef]
    [Google Scholar]
  2. Burke, C. ( 2009; ). Perinatal sepsis. J Perinat Neonatal Nurs 23, 42–51.[CrossRef]
    [Google Scholar]
  3. Doern, G. V., Barton, A. & Rao, S. ( 1998; ). Controlled comparative evaluation of BacT/Alert FAN and ESP 80A aerobic media as means for detecting bacteremia and fungemia. J Clin Microbiol 36, 2686–2689.
    [Google Scholar]
  4. Garcia-Prats, J. A., Cooper, T. R., Schneider, V. F., Stager, C. E. & Hansen, T. N. ( 2000; ). Rapid detection of microorganisms in blood cultures of newborn infants utilizing an automated blood culture system. Pediatrics 105, 523–527.[CrossRef]
    [Google Scholar]
  5. Gardner, S. L. ( 2009; ). Sepsis in the neonate. Crit Care Nurs Clin North Am 21, 121–141.[CrossRef]
    [Google Scholar]
  6. Gibson, A. T. ( 2007; ). Outcome following preterm birth. Best Pract Res Clin Obstet Gynaecol 21, 869–882.[CrossRef]
    [Google Scholar]
  7. Guerti, K., Ieven, M. & Mahieu, L. ( 2007; ). Diagnosis of catheter-related bloodstream infection in neonates: a study on the value of differential time to positivity of paired blood cultures. Pediatr Crit Care Med 8, 470–475.[CrossRef]
    [Google Scholar]
  8. Haque, K. N. ( 2005; ). Definitions of bloodstream infection in the newborn. Pediatr Crit Care Med 6, S45–S49.[CrossRef]
    [Google Scholar]
  9. Hurst, M. K. & Yoder, B. A. ( 1995; ). Detection of bacteremia in young infants: is 48 hours adequate? Pediatr Infect Dis J 14, 711–713.[CrossRef]
    [Google Scholar]
  10. Ieven, M., Verhoeven, J., Pattyn, S. R. & Goossens, H. ( 1995; ). Rapid and economical method for species identification of clinically significant coagulase-negative staphylococci. J Clin Microbiol 33, 1060–1063.
    [Google Scholar]
  11. Janjindamai, W. & Phetpisal, S. ( 2006; ). Time to positivity of blood culture in newborn infants. Southeast Asian J Trop Med Public Health 37, 171–176.
    [Google Scholar]
  12. Jardine, L., Davies, M. W. & Faoagali, J. ( 2006; ). Incubation time required for neonatal blood cultures to become positive. J Paediatr Child Health 42, 797–802.[CrossRef]
    [Google Scholar]
  13. Krisher, K. K., Gibb, P., Corbett, S. & Church, D. ( 2001; ). Comparison of the BacT/Alert PF pediatric FAN blood culture bottle with the standard pediatric blood culture bottle, the Pedi-BacT. J Clin Microbiol 39, 2880–2883.[CrossRef]
    [Google Scholar]
  14. Kristóf, K., Kocsis, E. & Nagy, K. ( 2009; ). Clinical microbiology of early-onset and late-onset neonatal sepsis, particularly among preterm babies. Acta Microbiol Immunol Hung 56, 21–51.[CrossRef]
    [Google Scholar]
  15. Kumar, Y., Qunibi, M., Neal, T. J. & Yoxall, C. W. ( 2001; ). Time to positivity of neonatal blood cultures. Arch Dis Child Fetal Neonatal Ed 85, F182–F186.[CrossRef]
    [Google Scholar]
  16. Kurlat, I., Stoll, B. J. & McGowan, J. E., Jr ( 1989; ). Time to positivity for detection of bacteremia in neonates. J Clin Microbiol 27, 1068–1071.
    [Google Scholar]
  17. Leroyer, A., Bedu, A., Lombrail, P., Desplanques, L., Diakite, B., Bingen, E., Aujard, Y. & Brodin, M. ( 1997; ). Prolongation of hospital stay and extra costs due to hospital-acquired infection in a neonatal unit. J Hosp Infect 35, 37–45.
    [Google Scholar]
  18. Mahieu, L. M., Buitenweg, N., Beutels, P. & De Dooy, J. J. ( 2001; ). Additional hospital stay and charges due to hospital-acquired infections in a neonatal intensive care unit. J Hosp Infect 47, 223–229.[CrossRef]
    [Google Scholar]
  19. Mahieu, L. M., De Muynck, A. O., De Dooy, J. J., Laroche, S. M. & Van Acker, K. J. ( 2000; ). Prediction of nosocomial sepsis in neonates by means of a computer-weighted bedside scoring system (NOSEP score). Crit Care Med 28, 2026–2033.[CrossRef]
    [Google Scholar]
  20. Mullett, M. D., Cook, E. F. & Gallagher, R. ( 1998; ). Nosocomial sepsis in the neonatal intensive care unit. J Perinatol 18, 112–115.
    [Google Scholar]
  21. Pattyn, S. R., Sion, J. P. & Verhoeven, J. ( 1990; ). Evaluation of the LOGIC system for the rapid identification of members of the family Enterobacteriaceae in the clinical microbiology laboratory. J Clin Microbiol 28, 1449–1450.
    [Google Scholar]
  22. Pauli, I., Jr, Shekhawat, P., Kehl, S. & Sasidharan, P. ( 1999; ). Early detection of bacteremia in the neonatal intensive care unit using the new BACTEC system. J Perinatol 19, 127–131.[CrossRef]
    [Google Scholar]
  23. Rowley, A. H. & Wald, E. R. ( 1986; ). Incubation period necessary to detect bacteremia in neonates. Pediatr Infect Dis 5, 590–591.[CrossRef]
    [Google Scholar]
  24. Van den Hoogen, A., Gerards, L. J., Verboon-Maciolek, M. A., Fleer, A. & Krediet, T. G. ( 2010; ). Long-term trends in the epidemiology of neonatal sepsis and antibiotic susceptibility of causative agents. Neonatology 97, 22–28.[CrossRef]
    [Google Scholar]
  25. Vinod Kumar, C. S. & Neelagaud, Y. F. ( 2005; ). Incubation period for culture positivity to detect septicaemia in neonates. Indian J Med Microbiol 23, 270–271.
    [Google Scholar]
  26. Zaidi, A. K., Thaver, D., Ali, S. A. & Khan, T. A. ( 2009; ). Pathogens associated with sepsis in newborns and young infants in developing countries. Pediatr Infect Dis J 28, S10–S18.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.020651-0
Loading
/content/journal/jmm/10.1099/jmm.0.020651-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error