1887

Abstract

The gene sequences were determined for 121 strains of Gram-negative anaerobic rods, including the genera , , , , , , , and . The mean pairwise gene sequence similarity (73.8–97.1 %) between species in each genus, except for the genus that comprises one species, was significantly less than that of the 16S rRNA gene sequence (88.3–96.3 %). Only pairwise gene sequence similarity (97.1 %) of the genus was higher than that of the 16S rRNA gene sequence (93.8 %). Each genus formed a distinct clade in the phylogenetic analysis of the gene sequence as well as the 16S rRNA gene sequence. The phylogenetic analysis indicated a higher evolutionary rate for the gene sequence than the 16S rRNA gene sequence, especially in the genera and . This study suggests that the gene is a useful alternative phylogenetic marker for the identification and classification of a broad range of Gram-negative anaerobic rods.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.020420-0
2010-11-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/jmm/59/11/1293.html?itemId=/content/journal/jmm/10.1099/jmm.0.020420-0&mimeType=html&fmt=ahah

References

  1. Bakir, M. A., Kitahara, M., Sakamoto, M., Matsumoto, M. & Benno, Y. ( 2006a; ). Bacteroides intestinalis sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 56, 151–154.[CrossRef]
    [Google Scholar]
  2. Bakir, M. A., Kitahara, M., Sakamoto, M., Matsumoto, M. & Benno, Y. ( 2006b; ). Bacteroides finegoldii sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 56, 931–935.[CrossRef]
    [Google Scholar]
  3. Bakir, M. A., Sakamoto, M., Kitahara, M., Matsumoto, M. & Benno, Y. ( 2006c; ). Bacteroides dorei sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 56, 1639–1643.[CrossRef]
    [Google Scholar]
  4. Benno, Y., Watabe, J. & Mitsuoka, T. ( 1983; ). Bacteroides pyogenes sp. nov., Bacteroides suis sp. nov., and Bacteroides helcogenes sp. nov., new species from abscesses and feces of pigs. Syst Appl Microbiol 4, 396–407.[CrossRef]
    [Google Scholar]
  5. Brousseau, R., Hill, J. E., Préfontaine, G., Goh, S.-H., Harel, J. & Hemmingsen, S. M. ( 2001; ). Streptococcus suis serotypes characterized by analysis of chaperonin 60 gene sequences. Appl Environ Microbiol 67, 4828–4833.[CrossRef]
    [Google Scholar]
  6. Collins, M. D., Love, D. N., Karjalainen, J., Kanervo, A., Forsblom, B., Willems, A., Stubbs, S., Sarkiala, E., Bailey, G. D. & other authors ( 1994; ). Phylogenetic analysis of members of the genus Porphyromonas and description of Porphyromonas cangingivalis sp. nov. and Porphyromonas cansulci sp. nov. Int J Syst Bacteriol 44, 674–679.[CrossRef]
    [Google Scholar]
  7. Conrads, G., Citron, D. M., Tyrrell, K. L., Horz, H.-P. & Goldstein, E. J. C. ( 2005; ). 16S–23S rRNA gene internal transcribed spacer sequences for analysis of the phylogenetic relationships among species on the genus Porphyromonas. Int J Syst Evol Microbiol 55, 607–613.[CrossRef]
    [Google Scholar]
  8. Coykendall, A. L., Kaczmarek, F. S. & Slots, J. ( 1980; ). Genetic heterogeneity in Bacteroides asaccharolyticus (Holdeman and Moore 1970) Finegold and Barnes 1977 (Approved Lists, 1980) and proposal of Bacteroides gingivalis sp. nov. and Bacteroides macacae (Slots and Genco) comb. nov. Int J Syst Bacteriol 30, 559–564.[CrossRef]
    [Google Scholar]
  9. Debruyne, L., Houf, K., Douidah, L., De Smet, S. & Vandamme, P. ( 2010; ). Reassessment of the taxonomy of Arcobacter cryaerophilus. Syst Appl Microbiol 33, 7–14.[CrossRef]
    [Google Scholar]
  10. Felsenstein, J. ( 1985; ). Confidence limits of phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  11. Felsenstein, J. ( 2005; ). phylip (Phylogeny Inference Package), version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  12. Fournier, D., Mouton, C., Lapierre, P., Kato, T., Okuda, K. & Ménard, C. ( 2001; ). Porphyromonas gulae sp. nov., an anaerobic, Gram-negative coccobacillus from the gingival sulcus of various animal hosts. Int J Syst Evol Microbiol 51, 1179–1189.[CrossRef]
    [Google Scholar]
  13. Goh, S. H., Santucci, Z., Kloos, W. E., Faltyn, M., George, C. G., Driedger, D. & Hemmingsen, S. M. ( 1997; ). Identification of Staphylococcus species and subspecies by the chaperonin 60 gene identification method and reverse checkerboard hybridization. J Clin Microbiol 35, 3116–3121.
    [Google Scholar]
  14. Hardham, J. M., King, K. W., Dreier, K., Wong, J., Strietzel, C., Eversole, R. R., Sfintescu, C. & Evans, R. T. ( 2008; ). Transfer of Bacteroides splanchnicus to Odoribacter gen. nov. as Odoribacter splanchnicus comb. nov., and description of Odoribacter denticanis sp. nov., isolated from the crevicular spaces of canine periodontal disease patients. Int J Syst Evol Microbiol 58, 103–109.[CrossRef]
    [Google Scholar]
  15. Hayashi, H., Shibata, K., Sakamoto, M., Tomita, S. & Benno, Y. ( 2007a; ). Prevotella copri sp. nov. and Prevotella stercorea sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 57, 941–946.[CrossRef]
    [Google Scholar]
  16. Hayashi, H., Shibata, K., Bakir, M. A., Sakamoto, M., Tomita, S. & Benno, Y. ( 2007b; ). Bacteroides coprophilus sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 57, 1323–1326.[CrossRef]
    [Google Scholar]
  17. Hill, J. E., Penny, S. L., Crowell, K. G., Goh, S. H. & Hemmingsen, S. M. ( 2004; ). cpnDB: a chaperonin sequence database. Genome Res 14, 1669–1675.[CrossRef]
    [Google Scholar]
  18. Hill, J. E., Paccagnella, A., Law, K., Melito, P. L., Woodward, D. L., Price, L., Leung, A. H., Ng, L.-K., Hemmingsen, S. M. & Goh, S. H. ( 2006; ). Identification of Campylobacter spp. and discrimination from Helicobacter and Arcobacter spp. by direct sequencing of PCR-amplified cpn60 sequences and comparison to cpnDB, a chaperonin reference sequence database. J Med Microbiol 55, 393–399.[CrossRef]
    [Google Scholar]
  19. Hirasawa, M. & Takada, K. ( 1994; ). Porphyromonas gingivicanis sp. nov. and Porphyromonas crevioricanis sp. nov., isolated from beagles. Int J Syst Bacteriol 44, 637–640.[CrossRef]
    [Google Scholar]
  20. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  21. Kitahara, M., Sakamoto, M., Ike, M., Sakata, S. & Benno, Y. ( 2005; ). Bacteroides plebeius sp. nov. and Bacteroides coprocola sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 55, 2143–2147.[CrossRef]
    [Google Scholar]
  22. Lan, P. T. N., Sakamoto, M., Sakata, S. & Benno, Y. ( 2006; ). Bacteroides barnesiae sp. nov., Bacteroides salanitronis sp. nov. and Bacteroides gallinarum sp. nov., isolated from chicken caecum. Int J Syst Evol Microbiol 56, 2853–2859.[CrossRef]
    [Google Scholar]
  23. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A. & other authors ( 2007; ). clustal w and clustal_x version 2.0. Bioinformatics 23, 2947–2948.[CrossRef]
    [Google Scholar]
  24. Love, D. N. ( 1995; ). Porphyromonas macacae comb. nov., a consequence of Bacteroides macacae being a senior synonym of Porphyromonas salivosa. Int J Syst Bacteriol 45, 90–92.[CrossRef]
    [Google Scholar]
  25. Love, D. N., Johnson, J. L., Jones, R. F., Bailey, M. & Calverley, A. ( 1986; ). Bacteroides tectum sp. nov. and characteristics of other nonpigmented Bacteroides isolates from soft-tissue infections from cats and dogs. Int J Syst Bacteriol 36, 123–128.[CrossRef]
    [Google Scholar]
  26. Love, D. N., Johnson, J. L., Jones, R. F. & Calverley, A. ( 1987; ). Bacteroides salivosus sp. nov., an asaccharolytic, black-pigmented species from cats. Int J Syst Bacteriol 37, 307–309.[CrossRef]
    [Google Scholar]
  27. Love, D. N., Bailey, G. D., Collings, S. & Briscoe, D. A. ( 1992; ). Description of Porphyromonas circumdentaria sp. nov. and reassignment of Bacteroides salivosus (Love, Johnson, Jones, and Calverley 1987) as Porphyromonas (Shah and Collins 1988) salivosa comb. nov. Int J Syst Bacteriol 42, 434–438.[CrossRef]
    [Google Scholar]
  28. Morotomi, M., Nagai, F., Sakon, H. & Tanaka, R. ( 2009; ). Paraprevotella clara gen. nov., sp. nov. and Paraprevotella xylaniphila sp. nov., members of the family ‘Prevotellaceae’ isolated from human faeces. Int J Syst Evol Microbiol 59, 1895–1900.[CrossRef]
    [Google Scholar]
  29. Ohtsuka, E., Matsuki, S., Ikehara, M., Takahashi, Y. & Matsubara, K. ( 1985; ). An alternative approach to deoxyoligonucleotides as hybridization probes by insertion of deoxyinosine at ambiguous codon positions. J Biol Chem 260, 2605–2608.
    [Google Scholar]
  30. Paster, B. J., Dewhirst, F. E., Olsen, I. & Fraser, G. J. ( 1994; ). Phylogeny of Bacteroides, Prevotella, and Porphyromonas spp. and related bacteria. J Bacteriol 176, 725–732.
    [Google Scholar]
  31. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  32. Sakamoto, M. & Benno, Y. ( 2006; ). Reclassification of Bacteroides distasonis, Bacteroides goldsteinii and Bacteroides merdae as Parabacteroides distasonis gen. nov., comb. nov., Parabacteroides goldsteinii comb. nov. and Parabacteroides merdae comb. nov. Int J Syst Evol Microbiol 56, 1599–1605.[CrossRef]
    [Google Scholar]
  33. Sakamoto, M., Suzuki, M., Umeda, M., Ishikawa, I. & Benno, Y. ( 2002; ). Reclassification of Bacteroides forsythus (Tanner et al. 1986) as Tannerella forsythensis corrig., gen. nov., comb. nov. Int J Syst Evol Microbiol 52, 841–849.[CrossRef]
    [Google Scholar]
  34. Sakamoto, M., Suzuki, M., Huang, Y., Umeda, M., Ishikawa, I. & Benno, Y. ( 2004; ). Prevotella shahii sp. nov. and Prevotella salivae sp. nov., isolated from the human oral cavity. Int J Syst Evol Microbiol 54, 877–883.[CrossRef]
    [Google Scholar]
  35. Sakamoto, M., Huang, Y., Umeda, M., Ishikawa, I. & Benno, Y. ( 2005a; ). Prevotella multiformis sp. nov., isolated from human subgingival plaque. Int J Syst Evol Microbiol 55, 815–819.[CrossRef]
    [Google Scholar]
  36. Sakamoto, M., Umeda, M., Ishikawa, I. & Benno, Y. ( 2005b; ). Prevotella multisaccharivorax sp. nov., isolated from human subgingival plaque. Int J Syst Evol Microbiol 55, 1839–1843.[CrossRef]
    [Google Scholar]
  37. Sakamoto, M., Kitahara, M. & Benno, Y. ( 2007a; ). Parabacteroides johnsonii sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 57, 293–296.[CrossRef]
    [Google Scholar]
  38. Sakamoto, M., Lan, P. T. N. & Benno, Y. ( 2007b; ). Barnesiella viscericola gen. nov., sp. nov., a novel bacterium in the family Porphyromonadaceae isolated from chicken caecum. Int J Syst Evol Microbiol 57, 342–346.[CrossRef]
    [Google Scholar]
  39. Sakamoto, M., Ohkusu, K., Masaki, T., Kako, H., Ezaki, T. & Benno, Y. ( 2007c; ). Prevotella pleuritidis sp. nov., isolated from pleural fluid. Int J Syst Evol Microbiol 57, 1725–1728.[CrossRef]
    [Google Scholar]
  40. Sakamoto, M., Kumada, H., Hamada, N., Takahashi, Y., Okamoto, M., Bakir, M. A. & Benno, Y. ( 2009a; ). Prevotella falsenii sp. nov., a Prevotella intermedia-like organism isolated from monkey dental plaque. Int J Syst Evol Microbiol 59, 319–322.[CrossRef]
    [Google Scholar]
  41. Sakamoto, M., Takagaki, A., Matsumoto, K., Kato, Y., Goto, K. & Benno, Y. ( 2009b; ). Butyricimonas synergistica gen. nov., sp. nov. and Butyricimonas virosa sp. nov., butyric acid-producing bacteria in the family ‘Porphyromonadaceae’ isolated from rat faeces. Int J Syst Evol Microbiol 59, 1748–1753.[CrossRef]
    [Google Scholar]
  42. Sakamoto, M., Suzuki, N. & Okamoto, M. ( 2010a; ). Prevotella aurantiaca sp. nov., isolated from the human oral cavity. Int J Syst Evol Microbiol 60, 500–503.[CrossRef]
    [Google Scholar]
  43. Sakamoto, M., Suzuki, N. & Benno, Y. ( 2010b; ). hsp60 and 16S rRNA gene sequence relationships among species of the genus Bacteroides with the finding that Bacteroides suis and Bacteroides tectus are heterotypic synonyms of Bacteroides pyogenes. Int J Syst Evol Microbiol 60 (in press
    [Google Scholar]
  44. Shah, H. N. & Collins, M. D. ( 1988; ). Proposal for reclassification of Bacteroides asaccharolyticus, Bacteroides gingivalis, and Bacteroides endodontalis in a new genus, Porphyromonas. Int J Syst Bacteriol 38, 128–131.[CrossRef]
    [Google Scholar]
  45. Shah, H. N. & Collins, M. D. ( 1989; ). Proposal to restrict the genus Bacteroides (Castellani and Chalmers) to Bacteroides fragilis and closely related species. Int J Syst Bacteriol 39, 85–87.[CrossRef]
    [Google Scholar]
  46. Shah, H. N. & Collins, M. D. ( 1990; ). Prevotella, a new genus to include Bacteroides melaninogenicus and related species formerly classified in the genus Bacteroides. Int J Syst Bacteriol 40, 205–208.[CrossRef]
    [Google Scholar]
  47. Shah, H. N., Olsen, I., Bernard, K., Finegold, S. M., Gharbia, S. & Gupta, R. S. ( 2009; ). Approaches to the study of the systematics of anaerobic, Gram-negative, non-sporeforming rods: current status and perspectives. Anaerobe 15, 179–194.[CrossRef]
    [Google Scholar]
  48. Slots, J. & Genco, R. J. ( 1980; ). Bacteroides melaninogenicus subsp. macacae, a new subspecies from monkey periodontopathic indigenous microflora. Int J Syst Bacteriol 30, 82–85.[CrossRef]
    [Google Scholar]
  49. Song, Y., Liu, C., Bolanos, M., Lee, J., McTeague, M. & Finegold, S. M. ( 2005; ). Evaluation of 16S rRNA sequencing and reevaluation of a short biochemical scheme for identification of clinical significant Bacteroides species. J Clin Microbiol 43, 1531–1537.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.020420-0
Loading
/content/journal/jmm/10.1099/jmm.0.020420-0
Loading

Data & Media loading...

Supplements

vol. , part 11, pp. 1293 - 1302

[ PDF file] (182 KB)

Percentage sequence similarity based on pairwise comparisons of the and 16S rRNA gene sequences of species.

Percentage sequence similarity based on pairwise comparisons of the and 16S rRNA gene sequences of species.

Percentage sequence similarity based on pairwise comparisons of the and 16S rRNA gene sequences of species.

Percentage sequence similarity based on pairwise comparisons of the and 16S rRNA gene sequences of species.



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error