1887

Abstract

Extended-spectrum -lactamases (ESBLs) are bacterial enzymes that confer resistance to advanced generation cephalosporins and can lead to therapeutic failures. There has been no analysis of factors associated with the risk of acquisition of ESBLs in neonates in an intensive care unit from northern India. The CTX-M ESBL enzymes impart resistance against advanced generation cephalosporins (e.g. cefotaxime) and CTX-M variants have become the most prevalent ESBLs worldwide. The CTX-M-15 enzyme in particular is increasingly being reported from isolates from northern India together with TEM-1. Moreover, is the most common cause of neonatal sepsis. Accordingly, this study aimed to: (i) characterize the mode of transmission of and among ESBL-producing strains isolated from patients admitted to a neonatal intensive care unit (NICU), and (ii) identify factors associated with the acquisition of the said strains in male and female neonates. A total of 97 ESBL-producers was identified among 266 strains isolated from 238 neonates. The isolates were screened for , , , and , the last three genes being responsible for aminoglycoside resistance. PCR amplified genes were cloned and sequenced. Five , two , two and thirteen class1 integrons were detected. All the positive isolates, except one, were clonally related. Both univariate and multivariate analyses of factors for the acquisition of the said strains were performed with respect to the sex of the neonates. ‘Length of stay in the NICU’ was found to be the single independent factor associated with ESBL acquisition. In conclusion, our data suggest that male neonates who are colonized or infected by ESBL-producing have a longer stay in the NICU compared to their female counterparts. This prolonged stay may be due to male neonates becoming colonized/infected earlier than their female counterparts. Plasmid-mediated-conjugal transfer was found to be the mechanism of transfer of the resistance marker in the described setting.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.020214-0
2010-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/59/8/948.html?itemId=/content/journal/jmm/10.1099/jmm.0.020214-0&mimeType=html&fmt=ahah

References

  1. Akram M., Shahid M., Khan A. U. 2007; Etiology and antibiotic resistance patterns of community-acquired urinary tract infections in JNMC Hospital Aligarh, India. Ann Clin Microbiol Antimicrob 6:4 [CrossRef]
    [Google Scholar]
  2. Allen J. M., Reed D. L., Perotti M. A., Braig H. R. 2007; Evolutionary relationships of “ Candidatus riesia spp.”, endosymbiotic Enterobacteriaceae living within hematophagous primate lice. Appl Environ Microbiol 73:1659–1664 [CrossRef]
    [Google Scholar]
  3. Bagattini M., Crivaro V., Di Popolo A., Gentile F., Scarcella A., Triassi M., Villari P., Zarrilli R. 2006; Molecular epidemiology of extended-spectrum β -lactamase-producing Klebsiella pneumoniae in a neonatal intensive care unit. J Antimicrob Chemother 57:979–982 [CrossRef]
    [Google Scholar]
  4. Berman S. M., Binkin N. J., Hogue C. J. 1987; Assessing sex differences in neonatal survival: a study of discordant twins. Int J Epidemiol 16:436–440 [CrossRef]
    [Google Scholar]
  5. Bonnet R., Dutour C., Sampaio J. L., Chanal C., Sirot D., Labia R., De Champs C., Sirot J. 2001; Novel cefotaximase (CTX-M-16) with increased catalytic efficiency due to substitution Asp-240Gly. Antimicrob Agents Chemother 45:2269–2275 [CrossRef]
    [Google Scholar]
  6. Cheng J., Gao W., Yin J., Sun Z., Ye Y., Gao Y.-F., Li X., Li J.-B. 2010; Phenotypic and molecular characterization of two novel CTX-M enzymes carried by Klebsiella pneumoniae . Mol Biol Rep 37:1261–1267 [CrossRef]
    [Google Scholar]
  7. CLSI 2009 Performance Standards for Antimicrobial Susceptibility Testing , 19th informational supplement, M100–S19 Wayne, PA: Clinical and Laboratory Standards Institute;
    [Google Scholar]
  8. Cowan S. F., Steel K. J. 1970 Manual for the Identification of the Medical Bacteria Cambridge: Cambridge University Press;
    [Google Scholar]
  9. Crivaro V., Bagattini M., Salza M. F., Raimondi F., Rossano F., Triassi M., Zarrilli R. 2007; Risk factors for extended-spectrum β -lactamase-producing Serratia marcescens and Klebsiella pneumoniae acquisition in a neonatal intensive care unit. J Hosp Infect 67:135–141 [CrossRef]
    [Google Scholar]
  10. Doi Y., Yokoyama K., Yamane K., Wachino J., Shibata N., Yagi T., Shibayama K., Kato H., Arakawa Y. 2004; Plasmid mediated 16S rRNA methylase in Serratia marcescens conferring high level resistance to aminoglycosides. Antimicrob Agents Chemother 48:491–496 [CrossRef]
    [Google Scholar]
  11. Galimand M., Courvalin P., Lambert T. 2003; Plasmid mediated high-level resistance to aminoglycosides in Enterobacteriaceae due to 16S rRNA methylation. Antimicrob Agents Chemother 47:2565–2571 [CrossRef]
    [Google Scholar]
  12. Jarlier V., Nicolas M., Fournier G., Philippon A. 1988; Extended spectrum β -lactamases conferring transferable resistance to newer β -lactam agents in Enterobacteriaceae : hospital prevalence and susceptibility patterns. Rev Infect Dis 10:867–878 [CrossRef]
    [Google Scholar]
  13. Kaufman D., Fairchild K. D. 2004; Clinical microbiology of bacterial and fungal sepsis in very-low-birth-weight infants. Clin Microbiol Rev 17:638–680 [CrossRef]
    [Google Scholar]
  14. Khemtong S., Chuanchuen R. 2008; Class 1 integrons and Salmonella genomic island 1 among Salmonella enterica isolated from poultry and swine. Microb Drug Resist 14:65–70 [CrossRef]
    [Google Scholar]
  15. Kim S., Hu J., Gautom R., Kim J., Lee B., Boyle D. S. 2007; CTX-M extended-spectrum β -lactamases, Washington State. Emerg Infect Dis 13:513–514 [CrossRef]
    [Google Scholar]
  16. Lee H., Yong D., Yum J. H., Roh K. H., Lee K., Yamane K., Arakawa Y., Chong Y. 2006; Dissemination of 16S rRNA methylase-mediated highly amikacin-resistant isolates of Klebsiella pneumoniae and Acinetobacter baumannii in Korea. Diagn Microbiol Infect Dis 56:305–312 [CrossRef]
    [Google Scholar]
  17. Ma L., Lin C.-J., Chen J.-H., Fung C.-P., Chang F.-Y., Lai Y.-K., Lin J.-C., Siu L. K. the Taiwan Surveillance of Antimicrobial Resistance Project 2009; Widespread dissemination of aminoglycoside resistance genes armA and rmtB in Klebsiella pneumonia e isolates in Taiwan producing CTX-M-type extended-spectrum β -lactamases. Antimicrob Agents Chemother 53:104–111 [CrossRef]
    [Google Scholar]
  18. Muzaheed Doi Y., Adams-Haduch J. M., Endimiani A., Sidjabat H. E., Gaddad S. M., Paterson D. L. 2008; High prevalence of CTX-M-15-producing Klebsiella pneumoniae among inpatients and outpatients with urinary tract infection in Southern India. J Antimicrob Chemother 61:1393–1394 [CrossRef]
    [Google Scholar]
  19. Muzaheed Doi Y., Adams-Haduch M. J., Shivannavar C. T., Paterson D. L., Gaddad S. M. 2009; Faecal carriage of CTX-M-15-producing Klebsiella pneumoniae in patients with acute gastroenteritis. Indian J Med Res 129:599–602
    [Google Scholar]
  20. Narayan S., Mathai S. S. 2005; Antibiotic use in neonates of birth-weight <2000g surviving to discharge. MJAFI 61:342–344
    [Google Scholar]
  21. Pagani L., Dell-Amico E., Migliavacca R., D'Andrea M. M., Giacobone E., Amicosante G., Romero E., Rossolini G. M. 2003; Multiple CTX-M-type extended-spectrum β -lactamases in nosocomial isolates of Enterobacteriaceae from a hospital in northern Italy. J Clin Microbiol 41:4264–4269 [CrossRef]
    [Google Scholar]
  22. Park Y. J., Lee S., Yu J. K., Woo G. J., Lee K., Arakawa Y. 2006; Co-production of 16S rRNA methylases and extended-spectrum β -lactamases in AmpC-producing Enterobacter cloacae , Citrobacter freundii and Serratia marcescens in Korea. J Antimicrob Chemother 58:907–908 [CrossRef]
    [Google Scholar]
  23. Pessoa-Silva C. L., Miyasaki C. H., De-Almeida M. F., Kopelman B. I., Raggio R. L., Wey B. S. 2001; Neonatal late-onset bloodstream infection: attributable mortality, excess of length of stay and risk factors. Eur J Epidemiol 17:715–720 [CrossRef]
    [Google Scholar]
  24. Schneider I., Queenan A. M., Markovska R., Markova B., Keuleyan E., Bauernfeind A. 2009; New variant of CTX-M-type extended-spectrum β -lactamases, CTX-M-71, with a Gly238Cys substitution in a Klebsiella pneumoniae isolate from Bulgaria. Antimicrob Agents Chemother 53:4518–4521 [CrossRef]
    [Google Scholar]
  25. Shakil S., Khan A. U. 2010; Infected foot ulcers in male and female diabetic patients: a clinico-bioinformative study. Ann Clin Microbiol Antimicrob 9:2 [CrossRef]
    [Google Scholar]
  26. Shakil S., Khan R., Zarrilli R., Khan A. U. 2008; Aminoglycosides versus bacteria – a description of the action, resistance mechanism, and nosocomial battleground. J Biomed Sci 15:5–14
    [Google Scholar]
  27. Simchen M. J., Beiner M. E., Strauss-Liviathan N., Dulitzky M., Kuint J., Mashiach S., Schiff E. 2000; Neonatal outcome in growth-restricted versus appropriately grown preterm infants. Am J Perinatol 17:187–192 [CrossRef]
    [Google Scholar]
  28. Touati A., Benallaoua S., Forte D., Madoux J., Brasme L., de Champs C. 2006; First report of CTX-M-15 and CTX-M-3 β -lactamases among clinical isolates of Enterobacteriaceae in Béjaia, Algeria. Int J Antimicrob Agents 27:397–402 [CrossRef]
    [Google Scholar]
  29. Versalovic J., Koeuth T., Lupski J. R. 1991; Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 19:6823–6831 [CrossRef]
    [Google Scholar]
  30. Walsh T. R. 2008; Clinically significant carbapenemases: an update. Curr Opin Infect Dis 21:367–371 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.020214-0
Loading
/content/journal/jmm/10.1099/jmm.0.020214-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error