flagellin induces a compartmentalized innate immune response in mouse lung Free

Abstract

Intranasal (i.n.) instillation of different amounts of purified flagellin preparation (1, 5 and 15 μg) in BALB/c mice stimulated a transient innate immune response in the lungs. This was characterized by infiltration of different kinds of leukocytes (neutrophils, monocytes and lymphocytes), production of various inflammatory mediators (tumour necrosis factor alpha, interleukin 1 beta, interleukin 10, nitric oxide, myeloperoxidase and malondialdehyde) and activated alveolar macrophages (AMs). The proinflammatory cytokine production resulted in accumulation of activated neutrophils and macrophages and their products following immunostimulation with flagellin. The activation of AMs by flagellin was non-specific as AMs obtained from flagellin-treated animals, even after 4 h of exposure, were found to engulf and kill and efficiently compared to macrophages obtained from control animals. i.n. instillation of 5 μg flagellin resulted in the generation of an effective innate immunity compared to other flagellin doses. Our data provide strong evidence that flagellin stimulates innate immunity in mouse lung.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.020107-0
2010-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/59/8/913.html?itemId=/content/journal/jmm/10.1099/jmm.0.020107-0&mimeType=html&fmt=ahah

References

  1. Allen P. M., Fisher D., Saunders J. R., Hart C. A. 1987; The role of capsular polysaccharide K21b of Klebsiella and of the structurally related colonic-acid polysaccharide of Escherichia coli in resistance to phagocytosis and serum killing. J Med Microbiol 24:363–370 [CrossRef]
    [Google Scholar]
  2. Chen G., Pedra J. H. F. 2010; The inflammasome in host defense. Sensors 10:97–111 [CrossRef]
    [Google Scholar]
  3. Chhibber S., Zgair A. K. 2009; Involvement of Stenotrophomonas maltophilia flagellin in bacterial adhesion to airway biotic surfaces: an in vitro study. Am J Biomed Sci 1:188–195
    [Google Scholar]
  4. Di Bonaventura G., Pompilio A., Zappacosta R., Petrucci F., Fiscarelli E., Rossi C., Piccolomini R. 2010; Role of excessive inflammatory response to Stenotrophomonas maltophilia lung infection in DBA/2 mice and implications for cystic fibrosis. Infect Immun 78:2466–2476 [CrossRef]
    [Google Scholar]
  5. Doherty T. M., Kastelein R., Menon S., Andrade S., Coffman R. L. 1993; Modulation of murine macrophage function by IL-13. J Immunol 151:7151–7160
    [Google Scholar]
  6. Eaves-Pyles T., Murthy K., Liaudet L., Virág L., Ross G., Soriano F. G., Szabó C., Salzman A. L. 2001a; Flagellin, a novel mediator of Salmonella -induced epithelial activation and systemic inflammation: I κ B α degradation, induction of nitric oxide synthase, induction of proinflammatory mediators, and cardiovascular dysfunction. J Immunol 166:1248–1260 [CrossRef]
    [Google Scholar]
  7. Eaves-Pyles T. D., Wong H. R., Odoms K., Pyles R. B. 2001b; Salmonella flagellin-dependent proinflammatory responses are localized to the conserved amino and carboxyl regions of the protein. J Immunol 167:7009–7016 [CrossRef]
    [Google Scholar]
  8. Hayashi F., Smith K. D., Ozinsky A., Hawn T. R., Yi E. C., Goodlett D. R., Eng J. K., Akira S., Underhill D. M., Aderem A. 2001; The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410:1099–1103 [CrossRef]
    [Google Scholar]
  9. Henderson B., Poole S., Wilson M. 1996; Bacterial modulins: a novel class of virulence factors which cause host tissue pathology by inducing cytokine synthesis. Microbiol Rev 60:316–341
    [Google Scholar]
  10. Hirano S. 1996; Migratory responses of PMN after intraperitoneal and intratracheal administration of lipopolysaccharide. Am J Physiol 270:L836–L845
    [Google Scholar]
  11. Honko A. N., Mizel S. B. 2004; Mucosal administration of flagellin induces innate immunity in the mouse lung. Infect Immun 72:6676–6679 [CrossRef]
    [Google Scholar]
  12. Kaisho T., Akira S. 2002; Toll-like receptors as adjuvant receptors. Biochim Biophys Acta 15891–13 [CrossRef]
    [Google Scholar]
  13. Liew F. Y. 1995; Interactions between cytokines and nitric oxide. Adv Neuroimmunol 5:201–209 [CrossRef]
    [Google Scholar]
  14. Lillehoj E. P., Kim B. T., Kim K. C. 2002; Identification of Pseudomonas aeruginosa flagellin as an adhesion for Muc1 mucin. Am J Physiol Lung Cell Mol Physiol 282:L751–L756 [CrossRef]
    [Google Scholar]
  15. Looney W. J. 2005; Role of Stenotrophomonas maltophilia in hospital-acquired infection. Br J Biomed Sci 62:145–154
    [Google Scholar]
  16. Luster A. D. 2002; The role of chemokines in linking innate and adaptive immunity. Curr Opin Immunol 14:129–135 [CrossRef]
    [Google Scholar]
  17. McDermott P. F., Ciacci-Woolwine F., Snipes J. A., Mizel S. B. 2000; High affinity interaction between gram-negative flagellin and a cell surface polypeptide results in human monocyte activation. Infect Immun 68:5525–5529 [CrossRef]
    [Google Scholar]
  18. Medan D., Wang L., Yang X., Dokka S., Castranova V., Rojanasakul Y. 2002; Induction of neutrophil apoptosis and secondary necrosis during endotoxin-induced pulmonary inflammation in mice. J Cell Physiol 191:320–326 [CrossRef]
    [Google Scholar]
  19. Mohler J., Azoulay-Dupuis E., Amory-River C., Mazoit J. X., Bedos J. P. P., Rieux V., Moine P. 2003; Streptococcus pneumoniae strain-dependent lung inflammatory responses in a murine model of pneumonia. Intensive Care Med 29:808–816
    [Google Scholar]
  20. Moors M. A., Li L., Mizel S. B. 2001; Activation of interleukin-1 receptor associated kinase by Gram-negative flagellin. Infect Immun 69:4424–4429 [CrossRef]
    [Google Scholar]
  21. Ohkawa H., Ohishi N., Yagi K. 1979; Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358 [CrossRef]
    [Google Scholar]
  22. Paolucci C., Rovere P., De Nadai C., Manfredii A. A., Clementi E. 2000; Nitric oxide inhibits the tumor necrosis factor α -regulated endocytosis of human dendritic cells in a cyclic GMP-dependent way. J Biol Chem 275:19638–19644 [CrossRef]
    [Google Scholar]
  23. Pathmanathan A., Waterer G. W. 2005; Significance of positive Stenotrophomonas maltophilia culture in acute respiratory tract infection. Eur Respir J 25:911–914 [CrossRef]
    [Google Scholar]
  24. Sanders C. J., Yu Y., Moore D. A., Williams I. R., Gewirtz A. T. 2006; Humoral immune response to flagellin requires T cells and activation of innate immunity. J Immunol 177:2810–2818 [CrossRef]
    [Google Scholar]
  25. Senol E. 2004; Stenotrophomonas maltophilia : the significance and role as a nosocomial pathogen. J Hosp Infect 57:1–7 [CrossRef]
    [Google Scholar]
  26. Sierro F., Dubois B., Coste A., Kaiserlian D., Kraehenbuhl J. P., Sirard J. C. 2001; Flagellin stimulation of intestinal epithelial cells triggers CCL20-mediated migration of dendritic cells. Proc Natl Acad Sci U S A 98:13722–13727 [CrossRef]
    [Google Scholar]
  27. Skerrett S. J., Wilson C. B., Liggitt H. D., Hajjar A. M. 2007; Redundant Toll-like receptor signaling in the pulmonary host response to Pseudomonas aeruginosa . Am J Physiol Lung Cell Mol Physiol 292:L312–L322
    [Google Scholar]
  28. Stein M., Keshav S., Harris N., Gordon S. 1992; Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med 176:287–292 [CrossRef]
    [Google Scholar]
  29. Sugar A. M., Brummer E., Stevens D. A. 1983; Murine pulmonary macrophages: evaluation of lung lavage fluids, miniaturized monolayers, and candidacidal activity. Am Rev Respir Dis 127:110–112
    [Google Scholar]
  30. Szabó C. 2003; Role of flagellin in the pathogenesis of shock and acute respiratory distress syndrome: therapeutic opportunities. Crit Care Med 31:S39–S45 [CrossRef]
    [Google Scholar]
  31. Talmaciu I., Ren C. L., Kolb S. M., Hickey E., Panitch H. B. 2002; Pulmonary function in technology-dependent children 2 years and older with bronchopulmonary dysplasia. Pediatr Pulmonol 33:181–188 [CrossRef]
    [Google Scholar]
  32. Tsai W. C., Strieter R. M., Zisman D. A., Wilkowski J. M., Bucknell K. A., Chen G. H., Standiford T. J. 1997; Nitric oxide is required for effective innate immunity against Klebsiella pneumoniae . Infect Immun 65:1870–1875
    [Google Scholar]
  33. Valdezate S., Vindel A., Martin-Davila P., Del Saz B. S., Baquero F., Canton R. 2004; High genetic diversity among Stenotrophomonas maltophilia strains despite their originating at a single hospital. J Clin Microbiol 42:693–699 [CrossRef]
    [Google Scholar]
  34. Wolfgang M. C., Jyot J., Goodman A. L., Ramphal R., Lory S. 2004; Pseudomonas aeruginosa regulates flagellin expression as part of a global response to airway fluid from cystic fibrosis patients. Proc Natl Acad Sci U S A 101:6664–6668 [CrossRef]
    [Google Scholar]
  35. Yoon S. S., Mekalanos J. J. 2008; Decreased potency of the Vibrio cholerae sheathed flagellum to trigger host innate immunity. Infect Immun 76:1282–1288 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.020107-0
Loading
/content/journal/jmm/10.1099/jmm.0.020107-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed