1887

Abstract

is an opportunistic pathogen that poses a threat in clinical settings due to its intrinsic and acquired resistance to a wide spectrum of antibiotics. Additionally, the presence of a subpopulation of cells surviving high concentrations of antibiotics, called persisters, makes it virtually impossible to eradicate a chronic infection. The mechanism underlying persistence is still unclear, partly due to the fact that it is a non-inherited phenotype. Based on our findings from a previously performed screening effort for persistence genes, we hypothesize that crosstalk can occur between two clinically relevant mechanisms: the persistence phenomenon and antibiotic resistance. This was tested by determining the persistence phenotype of strains that are resistant to the antibiotic fosfomycin due to either of two unrelated fosfomycin resistance mechanisms. Overexpression of () confers fosfomycin resistance by enzymic modification of the antibiotic, and in addition causes a decrease in the number of persister cells surviving ofloxacin treatment. Both phenotypes require the enzymic function of FosA, as mutation of the Arg residue abolishes fosfomycin resistance as well as low persistence. The role for fosfomycin resistance mechanisms in persistence is corroborated by demonstrating a similar phenotype in a strain with a mutation in (), which encodes a glycerol-3-phosphate transporter essential for fosfomycin uptake. These results indicate that fosfomycin resistance, conferred by mutation or by overexpression of , results in a decrease in the number of persister cells after treatment with ofloxacin and additionally stress that further research into the interplay between fosfomycin resistance and persistence is warranted.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.019703-0
2011-03-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/jmm/60/3/329.html?itemId=/content/journal/jmm/10.1099/jmm.0.019703-0&mimeType=html&fmt=ahah

References

  1. Beharry, Z. & Palzkill, T. ( 2005; ). Functional analysis of active site residues of the fosfomycin resistance enzyme FosA from Pseudomonas aeruginosa. J Biol Chem 280, 17786–17791.[CrossRef]
    [Google Scholar]
  2. Bernat, B. A., Laughlin, L. T. & Armstrong, R. N. ( 1997; ). Fosfomycin resistance protein (FosA) is a manganese metalloglutathione transferase related to glyoxalase I and the extradiol dioxygenases. Biochemistry 36, 3050–3055.[CrossRef]
    [Google Scholar]
  3. Bernat, B. A., Laughlin, L. T. & Armstrong, R. N. ( 1999; ). Elucidation of a monovalent cation dependence and characterization of the divalent cation binding site of the fosfomycin resistance protein (FosA). Biochemistry 38, 7462–7469.[CrossRef]
    [Google Scholar]
  4. Bigger, J. W. ( 1944; ). Treatment of staphylococcal infections with penicillin. Lancet ii, 497–500.
    [Google Scholar]
  5. Boos, W., Hartig-Beecken, I. & Altendorf, K. ( 1977; ). Purification and properties of a periplasmic protein related to sn-glycerol-3-phosphate transport in Escherichia coli. Eur J Biochem 72, 571–581.[CrossRef]
    [Google Scholar]
  6. Brooun, A., Liu, S. & Lewis, K. ( 2000; ). A dose-response study of antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 44, 640–646.[CrossRef]
    [Google Scholar]
  7. Castañeda-García, A., Rodríguez-Rojas, A., Guelfo, J. R. & Blázquez, J. ( 2009; ). The glycerol-3-phosphate permease GlpT is the only fosfomycin transporter in Pseudomonas aeruginosa. J Bacteriol 191, 6968–6974.[CrossRef]
    [Google Scholar]
  8. Choi, K. H., Kumar, A. & Schweizer, H. P. ( 2006; ). A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: application for DNA fragment transfer between chromosomes and plasmid transformation. J Microbiol Methods 64, 391–397.[CrossRef]
    [Google Scholar]
  9. Daniels, R., Reynaert, S., Hoekstra, H., Verreth, C., Janssens, J., Braeken, K., Fauvart, M., Beullens, S., Heusdens, C. & other authors ( 2006; ). Quorum signal molecules as biosurfactants affecting swarming in Rhizobium etli. Proc Natl Acad Sci U S A 103, 14965–14970.[CrossRef]
    [Google Scholar]
  10. De Groote, V. N., Verstraeten, N., Fauvart, M., Kint, C. I., Verbeeck, A. M., Beullens, S., Cornelis, P. & Michiels, J. ( 2009; ). Novel persistence genes in Pseudomonas aeruginosa identified by high-throughput screening. FEMS Microbiol Lett 297, 73–79.[CrossRef]
    [Google Scholar]
  11. del Pozo, J. L. & Patel, R. ( 2007; ). The challenge of treating biofilm-associated bacterial infections. Clin Pharmacol Ther 82, 204–209.[CrossRef]
    [Google Scholar]
  12. Dhar, N. & McKinney, J. D. ( 2007; ). Microbial phenotypic heterogeneity and antibiotic tolerance. Curr Opin Microbiol 10, 30–38.[CrossRef]
    [Google Scholar]
  13. Dörr, T., Lewis, K. & Vulić, M. ( 2009; ). SOS response induces persistence to fluoroquinolones in Escherichia coli. PLoS Genet 5, e1000760.[CrossRef]
    [Google Scholar]
  14. Dörr, T., Vulic, M. & Lewis, K. ( 2010; ). Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biol 8, e1000317.[CrossRef]
    [Google Scholar]
  15. Elvin, C. M., Hardy, C. M. & Rosenberg, H. ( 1985; ). Pi exchange mediated by the GlpT-dependent sn-glycerol-3-phosphate transport system in Escherichia coli. J Bacteriol 161, 1054–1058.
    [Google Scholar]
  16. Falagas, M. E., Kastoris, A. C., Karageorgopoulos, D. E. & Rafailidis, P. I. ( 2009; ). Fosfomycin for the treatment of infections caused by multidrug-resistant non-fermenting Gram-negative bacilli: a systematic review of microbiological, animal and clinical studies. Int J Antimicrob Agents 34, 111–120.[CrossRef]
    [Google Scholar]
  17. Fillgrove, K. L., Pakhomova, S., Newcomer, M. E. & Armstrong, R. N. ( 2003; ). Mechanistic diversity of fosfomycin resistance in pathogenic microorganisms. J Am Chem Soc 125, 15730–15731.[CrossRef]
    [Google Scholar]
  18. Fillgrove, K. L., Pakhomova, S., Schaab, M. R., Newcomer, M. E. & Armstrong, R. N. ( 2007; ). Structure and mechanism of the genomically encoded fosfomycin resistance protein, FosX, from Listeria monocytogenes. Biochemistry 46, 8110–8120.[CrossRef]
    [Google Scholar]
  19. Harrison, J. J., Turner, R. J. & Ceri, H. ( 2005; ). Persister cells, the biofilm matrix and tolerance to metal cations in biofilm and planktonic Pseudomonas aeruginosa. Environ Microbiol 7, 981–994.[CrossRef]
    [Google Scholar]
  20. Harrison, J. J., Turner, R. J. & Ceri, H. ( 2007; ). A subpopulation of Candida albicans and Candida tropicalis biofilm cells are highly tolerant to chelating agents. FEMS Microbiol Lett 272, 172–181.[CrossRef]
    [Google Scholar]
  21. Harrison, J. J., Wade, W. D., Akierman, S., Vacchi-Suzzi, C., Stremick, C. A., Turner, R. J. & Ceri, H. ( 2009; ). The chromosomal toxin gene yafQ is a determinant of multidrug tolerance for Escherichia coli growing in a biofilm. Antimicrob Agents Chemother 53, 2253–2258.[CrossRef]
    [Google Scholar]
  22. Hendlin, D., Stapley, E. O., Jackson, M., Wallick, H., Miller, A. K., Wolf, F. J., Miller, T. W., Chaiet, L., Kahan, F. M. & other authors ( 1969; ). Phosphonomycin, a new antibiotic produced by strains of streptomyces. Science 166, 122–123.[CrossRef]
    [Google Scholar]
  23. Jacobs, M. A., Alwood, A., Thaipisuttikul, I., Spencer, D., Haugen, E., Ernst, S., Will, O., Kaul, R., Raymond, C. & other authors ( 2003; ). Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 100, 14339–14344.[CrossRef]
    [Google Scholar]
  24. Keren, I., Kaldalu, N., Spoering, A., Wang, Y. & Lewis, K. ( 2004; ). Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett 230, 13–18.[CrossRef]
    [Google Scholar]
  25. Kim, Y. & Wood, T. K. ( 2010; ). Toxins Hha and CspD and small RNA regulator Hfq are involved in persister cell formation through MqsR in Escherichia coli. Biochem Biophys Res Commun 391, 209–213.[CrossRef]
    [Google Scholar]
  26. Kim, Y., Wang, X., Zhang, X. S., Grigoriu, S., Page, R., Peti, W. & Wood, T. K. ( 2010; ). Escherichia coli toxin/antitoxin pair MqsR/MqsA regulate toxin CspD. Environ Microbiol 12, 1105–1121.[CrossRef]
    [Google Scholar]
  27. LaFleur, M. D., Kumamoto, C. A. & Lewis, K. ( 2006; ). Candida albicans biofilms produce antifungal-tolerant persister cells. Antimicrob Agents Chemother 50, 3839–3846.[CrossRef]
    [Google Scholar]
  28. LaFleur, M. D., Qi, Q. & Lewis, K. ( 2010; ). Patients with long-term oral carriage harbor high-persister mutants of Candida albicans. Antimicrob Agents Chemother 54, 39–44.[CrossRef]
    [Google Scholar]
  29. Law, C. J., Enkavi, G., Wang, D. N. & Tajkhorshid, E. ( 2009; ). Structural basis of substrate selectivity in the glycerol-3-phosphate : phosphate antiporter GlpT. Biophys J 97, 1346–1353.[CrossRef]
    [Google Scholar]
  30. Levin, B. R. & Rozen, D. E. ( 2006; ). Non-inherited antibiotic resistance. Nat Rev Microbiol 4, 556–562.[CrossRef]
    [Google Scholar]
  31. Lewis, K. ( 2007; ). Persister cells, dormancy and infectious disease. Nat Rev Microbiol 5, 48–56.[CrossRef]
    [Google Scholar]
  32. Lewis, K. ( 2010; ). Persister cells. Annu Rev Microbiol 64, 357–372.[CrossRef]
    [Google Scholar]
  33. Liberati, N. T., Urbach, J. M., Miyata, S., Lee, D. G., Drenkard, E., Wu, G., Villanueva, J., Wei, T. & Ausubel, F. M. ( 2006; ). An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci U S A 103, 2833–2838.[CrossRef]
    [Google Scholar]
  34. Livermore, D. M. ( 2009; ). Has the era of untreatable infections arrived? J Antimicrob Chemother 64, i29–i36.[CrossRef]
    [Google Scholar]
  35. Lyczak, J. B., Cannon, C. L. & Pier, G. B. ( 2002; ). Lung infections associated with cystic fibrosis. Clin Microbiol Rev 15, 194–222.[CrossRef]
    [Google Scholar]
  36. Maddocks, S. E. & Oyston, P. C. ( 2008; ). Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. Microbiology 154, 3609–3623.[CrossRef]
    [Google Scholar]
  37. Mikuniya, T., Kato, Y., Kariyama, R., Monden, K., Hikida, M. & Kumon, H. ( 2005; ). Synergistic effect of fosfomycin and fluoroquinolones against Pseudomonas aeruginosa growing in a biofilm. Acta Med Okayama 59, 209–216.
    [Google Scholar]
  38. Mikuniya, T., Kato, Y., Ida, T., Maebashi, K., Monden, K., Kariyama, R. & Kumon, H. ( 2007; ). Treatment of Pseudomonas aeruginosa biofilms with a combination of fluoroquinolones and fosfomycin in a rat urinary tract infection model. J Infect Chemother 13, 285–290.[CrossRef]
    [Google Scholar]
  39. Möker, N., Dean, C. R. & Tao, J. ( 2010; ). Pseudomonas aeruginosa increases formation of multidrug-tolerant persister cells in response to quorum-sensing signaling molecules. J Bacteriol 192, 1946–1955.[CrossRef]
    [Google Scholar]
  40. Mulcahy, L. R., Burns, J. L., Lory, S. & Lewis, K. ( 2010; ). Emergence of Pseudomonas aeruginosa strains producing high levels of persister cells in patients with cystic fibrosis. J Bacteriol 192, 6191–6199.[CrossRef]
    [Google Scholar]
  41. Nilsson, A. I., Berg, O. G., Aspevall, O., Kahlmeter, G. & Andersson, D. I. ( 2003; ). Biological costs and mechanisms of fosfomycin resistance in Escherichia coli. Antimicrob Agents Chemother 47, 2850–2858.[CrossRef]
    [Google Scholar]
  42. Pakhomova, S., Rife, C. L., Armstrong, R. N. & Newcomer, M. E. ( 2004; ). Structure of fosfomycin resistance protein FosA from transposon Tn2921. Protein Sci 13, 1260–1265.[CrossRef]
    [Google Scholar]
  43. Rigsby, R. E., Rife, C. L., Fillgrove, K. L., Newcomer, M. E. & Armstrong, R. N. ( 2004; ). Phosphonoformate: a minimal transition state analogue inhibitor of the fosfomycin resistance protein, FosA. Biochemistry 43, 13666–13673.[CrossRef]
    [Google Scholar]
  44. Rigsby, R. E., Fillgrove, K. L., Beihoffer, L. A. & Armstrong, R. N. ( 2005; ). Fosfomycin resistance proteins: a nexus of glutathione transferases and epoxide hydrolases in a metalloenzyme superfamily. Methods Enzymol 401, 367–379.
    [Google Scholar]
  45. Schumacher, M. A., Piro, K. M., Xu, W., Hansen, S., Lewis, K. & Brennan, R. G. ( 2009; ). Molecular mechanisms of HipA-mediated multidrug tolerance and its neutralization by HipB. Science 323, 396–401.[CrossRef]
    [Google Scholar]
  46. Schweizer, H. P. ( 1991; ). Escherichia-Pseudomonas shuttle vectors derived from pUC18/19. Gene 97, 109–121.[CrossRef]
    [Google Scholar]
  47. Shah, D., Zhang, Z., Khodursky, A., Kaldalu, N., Kurg, K. & Lewis, K. ( 2006; ). Persisters: a distinct physiological state of E. coli. BMC Microbiol 6, 53.[CrossRef]
    [Google Scholar]
  48. Smith, P. A. & Romesberg, F. E. ( 2007; ). Combating bacteria and drug resistance by inhibiting mechanisms of persistence and adaptation. Nat Chem Biol 3, 549–556.[CrossRef]
    [Google Scholar]
  49. Smoukov, S. K., Telser, J., Bernat, B. A., Rife, C. L., Armstrong, R. N. & Hoffman, B. M. ( 2002; ). EPR study of substrate binding to the Mn(II) active site of the bacterial antibiotic resistance enzyme FosA: a better way to examine Mn(II). J Am Chem Soc 124, 2318–2326.[CrossRef]
    [Google Scholar]
  50. Spoering, A. L. & Lewis, K. ( 2001; ). Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J Bacteriol 183, 6746–6751.[CrossRef]
    [Google Scholar]
  51. Spoering, A. L., Vulic, M. & Lewis, K. ( 2006; ). GlpD and PlsB participate in persister cell formation in Escherichia coli. J Bacteriol 188, 5136–5144.[CrossRef]
    [Google Scholar]
  52. Suárez, J. E. & Mendoza, M. C. ( 1991; ). Plasmid-encoded fosfomycin resistance. Antimicrob Agents Chemother 35, 791–795.[CrossRef]
    [Google Scholar]
  53. Vázquez-Laslop, N., Lee, H. & Neyfakh, A. A. ( 2006; ). Increased persistence in Escherichia coli caused by controlled expression of toxins or other unrelated proteins. J Bacteriol 188, 3494–3497.[CrossRef]
    [Google Scholar]
  54. Vercruysse, M., Fauvart, M., Cloots, L., Engelen, K., Thijs, I. M., Marchal, K. & Michiels, J. ( 2010; ). Genome-wide detection of predicted non-coding RNAs in Rhizobium etli expressed during free-living and host-associated growth using a high-resolution tiling array. BMC Genomics 11, 53.[CrossRef]
    [Google Scholar]
  55. Yanisch-Perron, C., Vieira, J. & Messing, J. ( 1985; ). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33, 103–119.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.019703-0
Loading
/content/journal/jmm/10.1099/jmm.0.019703-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error