1887

Abstract

DNA sequence variation analysis has divided varicella-zoster virus (VZV; ) into distinct geographical clades: European, Asian, African and Japanese. These genotypes are becoming increasingly prevalent within regions atypical to their original source and there has been the suggestion of recombination between genotypes. Seventy-eight clinical isolates from hospitalized patients with varicella were collected in New South Wales, the Northern Territory, Western Australia and Victoria from 2006 to 2009. The wild-type strains and the vaccine strain (vOka) were differentiated by single nucleotide polymorphism detection using high-resolution melt analysis of five target genes (ORF1, -21, -37, -60 and -62), and by DNA sequence analysis of a 484 bp region of ORF22. Phylogenetic analysis showed that 46 % (36/78) of the clinical isolates were European clade 1 (C/E1) strains, 21 % (16/78) were European clade 3 (B/E2) strains, 12 % (9/78) were Asian/African clade 5 (A/M1) strains, 10 % (8/78) were clade 4 (J2/M2), 6 % (5/78) were clade 2 (J/J) and 5 % (4/78) belonged to the novel clade VI. No significant association was shown between VZV genotype and region, age or gender. Although European strains were most common, the results suggest an increase in African/Asian, Japanese and clade VI genotypes circulating in Australia.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.019547-0
2010-08-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/59/8/935.html?itemId=/content/journal/jmm/10.1099/jmm.0.019547-0&mimeType=html&fmt=ahah

References

  1. Barrett-Muir, W., Nichols, R. & Breuer, J. ( 2002; ). Phylogenetic analysis of varicella-zoster virus: evidence of intercontinental spread of genotypes and recombination. J Virol 76, 1971–1979.[CrossRef]
    [Google Scholar]
  2. Barrett-Muir, W., Scott, F. T., Aaby, P., John, J., Matondo, P., Chaudhry, Q. L., Siqueira, M., Poulsen, A., Yaminishi, K. & Breuer, J. ( 2003; ). Genetic variation of varicella-zoster virus: evidence for geographical separation of strains. J Med Virol 70, S42–S47.[CrossRef]
    [Google Scholar]
  3. Breuer, J., Grose, C., Norberg, P., Tipples, G. & Schmid, D. S. ( 2010; ). A proposal for a common nomenclature for viral clades that form the species varicella-zoster virus: summary of VZV Nomenclature Meeting 2008, Barts and the London School of Medicine and Dentistry, 24–25 July 2008. J Gen Virol 91, 821–828.[CrossRef]
    [Google Scholar]
  4. Brisson, M., Edmunds, W. J., Gay, N. J., Law, B. & De Serres, G. ( 2000; ). Modelling the impact of immunization on the epidemiology of varicella zoster virus. Epidemiol Infect 125, 651–669.[CrossRef]
    [Google Scholar]
  5. Cohen, T. & Lipsitch, M. ( 2008; ). Too little of a good thing: a paradox of moderate infection control. Epidemiology 19, 588–589.[CrossRef]
    [Google Scholar]
  6. Edmunds, W. J. & Brisson, M. ( 2002; ). The effect of vaccination on the epidemiology of varicella zoster virus. J Infect 44, 211–219.[CrossRef]
    [Google Scholar]
  7. Efron, B., Halloran, E. & Holmes, S. ( 1996; ). Bootstrap confidence levels for phylogenetic trees. Proc Natl Acad Sci U S A 93, 7085–7090.[CrossRef]
    [Google Scholar]
  8. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  9. Grose, C. ( 2006; ). Varicella zoster virus: out of Africa and into the research laboratory. Herpes 13, 32–36.
    [Google Scholar]
  10. Grose, C., Tyler, S., Peters, G., Hiebert, J., Stephens, G. M., Ruyechan, W. T., Jackson, W., Storlie, J. & Tipples, G. A. ( 2004; ). Complete DNA sequence analyses of the first two varicella-zoster virus glycoprotein E (D150N) mutant viruses found in North America: evolution of genotypes with an accelerated cell spread phenotype. J Virol 78, 6799–6807.[CrossRef]
    [Google Scholar]
  11. Hall, T. ( 1999; ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95–98.
    [Google Scholar]
  12. Hope-Simpson, R. E. ( 1965; ). The nature of herpes zoster: a long-term study and a new hypothesis. Proc R Soc Med 58, 9–20.
    [Google Scholar]
  13. Koskiniemi, M., Lappalainen, M., Schmid, D. S., Rubtcova, E. & Loparev, V. N. ( 2007; ). Genotypic analysis of varicella-zoster virus and its seroprevalence in Finland. Clin Vaccine Immunol 14, 1057–1061.[CrossRef]
    [Google Scholar]
  14. LaRussa, P., Steinberg, S., Arvin, A., Dwyer, D., Burgess, M., Menegus, M., Rekrut, K., Yamanishi, K. & Gershon, A. ( 1998; ). Polymerase chain reaction and restriction fragment length polymorphism analysis of varicella-zoster virus isolates from the United States and other parts of the world. J Infect Dis 178, S64–S66.[CrossRef]
    [Google Scholar]
  15. Loparev, V. N., Argaw, T., Krause, P. R., Takayama, M. & Schmid, D. S. ( 2000; ). Improved identification and differentiation of varicella-zoster virus (VZV) wild-type strains and an attenuated varicella vaccine strain using a VZV open reading frame 62-based PCR. J Clin Microbiol 38, 3156–3160.
    [Google Scholar]
  16. Loparev, V. N., Gonzalez, A., Deleon-Carnes, M., Tipples, G., Fickenscher, H., Torfason, E. G. & Schmid, D. S. ( 2004; ). Global identification of three major genotypes of varicella-zoster virus: longitudinal clustering and strategies for genotyping. J Virol 78, 8349–8358.[CrossRef]
    [Google Scholar]
  17. Loparev, V. N., Rubtcova, E. N., Bostik, V., Govil, D., Birch, C. J., Druce, J. D., Schmid, D. S. & Croxson, M. C. ( 2007; ). Identification of five major and two minor genotypes of varicella-zoster virus strains: a practical two-amplicon approach used to genotype clinical isolates in Australia and New Zealand. J Virol 81, 12758–12765.[CrossRef]
    [Google Scholar]
  18. Loparev, V. N., Rubtcova, E. N., Bostik, V., Tzaneva, V., Sauerbrei, A., Robo, A., Sattler-Dornbacher, E., Hanovcova, I., Stepanova, V. & other authors ( 2009; ). Distribution of varicella-zoster virus (VZV) wild-type genotypes in northern and southern Europe: evidence for high conservation of circulating genotypes. Virology 383, 216–225.[CrossRef]
    [Google Scholar]
  19. Norberg, P., Liljeqvist, J. A., Bergstrom, T., Sammons, S., Schmid, D. S. & Loparev, V. N. ( 2006; ). Complete-genome phylogenetic approach to varicella-zoster virus evolution: genetic divergence and evidence for recombination. J Virol 80, 9569–9576.[CrossRef]
    [Google Scholar]
  20. Parker, S. P., Quinlivan, M., Taha, Y. & Breuer, J. ( 2006; ). Genotyping of varicella-zoster virus and the discrimination of Oka vaccine strains by TaqMan real-time PCR. J Clin Microbiol 44, 3911–3914.[CrossRef]
    [Google Scholar]
  21. Peters, G. A., Tyler, S. D., Grose, C., Severini, A., Gray, M. J., Upton, C. & Tipples, G. A. ( 2006; ). A full-genome phylogenetic analysis of varicella-zoster virus reveals a novel origin of replication-based genotyping scheme and evidence of recombination between major circulating clades. J Virol 80, 9850–9860.[CrossRef]
    [Google Scholar]
  22. Pybus, O. G. ( 2006; ). Model selection and the molecular clock. PLoS Biol 4, e151 [CrossRef]
    [Google Scholar]
  23. Quinlivan, M., Hawrami, K., Barrett-Muir, W., Aaby, P., Arvin, A., Chow, V. T., John, T. J., Matondo, P., Peiris, M. & other authors ( 2002; ). The molecular epidemiology of varicella-zoster virus: evidence for geographic segregation. J Infect Dis 186, 888–894.[CrossRef]
    [Google Scholar]
  24. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  25. Sengupta, N., Quinlivan, M. & Breuer, J. ( 2009; ). Comparison of the molecular epidemiology of varicella zoster virus in vaccinated and unvaccinated individuals. In 49th Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC). San Francisco, CA, USA. American Society for Microbiology.
  26. Sergeev, N., Rubtcova, E., Chizikov, V., Schmid, D. S. & Loparev, V. N. ( 2006; ). New mosaic subgenotype of varicella-zoster virus in the USA: VZV detection and genotyping by oligonucleotide-microarray. J Virol Methods 136, 8–16.[CrossRef]
    [Google Scholar]
  27. Taha, Y., Scott, F. T., Parker, S. P., Syndercombe Court, D., Quinlivan, M. L. & Breuer, J. ( 2006; ). Reactivation of 2 genetically distinct varicella-zoster viruses in the same individual. Clin Infect Dis 43, 1301–1303.[CrossRef]
    [Google Scholar]
  28. Tamura, K., Dudley, J., Nei, M. & Kumar, S. ( 2007; ). mega4: Molecular Evolutionary Genetics Analysis (mega) software version 4.0. Mol Biol Evol 24, 1596–1599.[CrossRef]
    [Google Scholar]
  29. Toi, C. S. & Dwyer, D. E. ( 2008; ). Differentiation between vaccine and wild-type varicella-zoster virus genotypes by high-resolution melt analysis of single nucleotide polymorphisms. J Clin Virol 43, 18–24.[CrossRef]
    [Google Scholar]
  30. Vazquez, M., LaRussa, P. S., Gershon, A. A., Steinberg, S. P., Freudigman, K. & Shapiro, E. D. ( 2001; ). The effectiveness of the varicella vaccine in clinical practice. N Engl J Med 344, 955–960.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.019547-0
Loading
/content/journal/jmm/10.1099/jmm.0.019547-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error