Purified chicken intestinal mucin attenuates pathogenicity Free

Abstract

is a major causative agent of diarrhoeal disease worldwide in the human population. In contrast, heavy colonization of poultry typically does not lead to disease and colonized chickens are a major source of infections in humans. Previously, we have shown that chicken (but not human) intestinal mucus inhibits internalization. In this study, we test the hypothesis that chicken mucin, the main component of mucus, is responsible for this inhibition of virulence. Purified chicken intestinal mucin attenuated binding and internalization into HCT-8 cells depending on the site of origin of the mucin (large intestine>small intestine>caecum). invasion of HCT-8 cells was preferentially inhibited compared to bacterial binding to cells. Exposure of the mucin to sodium metaperiodate recovered bacterial invasion levels, suggesting a glycan-mediated effect. However, fucosidase or sialidase pre-treatment of mucin failed to abrogate the inhibition of pathogenicity. In conclusion, differences in the composition of chicken and human intestinal mucin may contribute to the differential outcome of infection of these hosts.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.019315-0
2010-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/59/8/898.html?itemId=/content/journal/jmm/10.1099/jmm.0.019315-0&mimeType=html&fmt=ahah

References

  1. Bacon D. J., Alm R. A., Hu L., Hickey T. E., Ewing C. P., Batchelor R. A., Trust T. J., Guerry P. 2002; DNA sequence and mutational analyses of the pVir plasmid of Campylobacter jejuni 81-176. Infect Immun 70:6242–6250 [CrossRef]
    [Google Scholar]
  2. Byrne C. M., Clyne M., Bourke B. 2007; Campylobacter jejuni adhere to and invade chicken intestinal epithelial cells in vitro . Microbiology 153:561–569 [CrossRef]
    [Google Scholar]
  3. Fernandez F., Sharma R., Hinton M., Bedford M. R. 2000; Diet influences the colonisation of Campylobacter jejuni and distribution of mucin carbohydrates in the chick intestinal tract. Cell Mol Life Sci 57:1793–1801 [CrossRef]
    [Google Scholar]
  4. Forder R. E., Howarth G. S., Tivey D. R., Hughes R. J. 2007; Bacterial modulation of small intestinal goblet cells and mucin composition during early posthatch development of poultry. Poult Sci 86:2396–2403 [CrossRef]
    [Google Scholar]
  5. Guerry P., Szymanski C. M., Prendergast M. M., Hickey T. E., Ewing C. P., Pattarini D. L., Moran A. P. 2002; Phase variation of Campylobacter jejuni 81-176 lipooligosaccharide affects ganglioside mimicry and invasiveness in vitro . Infect Immun 70:787–793 [CrossRef]
    [Google Scholar]
  6. Hanninen M. L., Perko-Makela P., Pitkala A., Rautelin H. 2000; A three-year study of Campylobacter jejuni genotypes in humans with domestically acquired infections and in chicken samples from the Helsinki area. J Clin Microbiol 38:1998–2000
    [Google Scholar]
  7. Hugdahl M. B., Beery J. T., Doyle M. P. 1988; Chemotactic behavior of Campylobacter jejuni . Infect Immun 56:1560–1566
    [Google Scholar]
  8. Humphrey T., O'Brien S., Madsen M. 2007; Campylobacters as zoonotic pathogens: a food production perspective. Int J Food Microbiol 117:237–257 [CrossRef]
    [Google Scholar]
  9. Janssen R., Krogfelt K. A., Cawthraw S. A., van Pelt W., Wagenaar J. A., Owen R. J. 2008; Host-pathogen interactions in Campylobacter infections: the host perspective. Clin Microbiol Rev 21:505–518 [CrossRef]
    [Google Scholar]
  10. Lang T., Hansson G. C., Samuelsson T. 2006; An inventory of mucin genes in the chicken genome shows that the mucin domain of Muc13 is encoded by multiple exons and that ovomucin is part of a locus of related gel-forming mucins. BMC Genomics 7:197 [CrossRef]
    [Google Scholar]
  11. Larson C. L., Shah D. H., Dhillon A. S., Call D. R., Ahn S., Haldorson G. J., Davitt C., Konkel M. E. 2008; Campylobacter jejuni invade chicken LMH cells inefficiently and stimulate differential expression of the chicken CXCLi1 and CXCLi2 cytokines. Microbiology 154:3835–3847 [CrossRef]
    [Google Scholar]
  12. Madden R. H., Moran L., Scates P. 1998; Frequency of occurrence of Campylobacter spp. in red meats and poultry in Northern Ireland and their subsequent subtyping using polymerase chain reaction-restriction fragment length polymorphism and the random amplified polymorphic DNA method. J Appl Microbiol 84:703–708 [CrossRef]
    [Google Scholar]
  13. Pearson A. D., Greenwood M. H., Donaldson J., Healing T. D., Jones D. M., Shahamat M., Feltham R. K., Colwell R. R. 2000; Continuous source outbreak of campylobacteriosis traced to chicken. J Food Prot 63:309–314
    [Google Scholar]
  14. Ruiz-Palacios G. M., Cervantes L. E., Ramos P., Chavez-Munguia B., Newburg D. S. 2003; Campylobacter jejuni binds intestinal H(O) antigen (Fuc α 1, 2Gal β 1, 4GlcNAc), and fucosyloligosaccharides of human milk inhibit its binding and infection. J Biol Chem 278:14112–14120 [CrossRef]
    [Google Scholar]
  15. Stevenson R. A., Huang J. A., Studdert M. J., Hartley C. A. 2004; Sialic acid acts as a receptor for equine rhinitis A virus binding and infection. J Gen Virol 85:2535–2543 [CrossRef]
    [Google Scholar]
  16. Tierney J. B., Matthews E., Carrington S. D., Mulcahy G. 2007; Interaction of Eimeria tenella with intestinal mucin in vitro . J Parasitol 93:634–638 [CrossRef]
    [Google Scholar]
  17. Van Deun K., Pasmans F., Ducatelle R., Flahou B., Vissenberg K., Martel A., Van den Broeck W., Van Immerseel F., Haesebrouck F. 2008; Colonization strategy of Campylobacter jejuni results in persistent infection of the chicken gut. Vet Microbiol 130:285–297 [CrossRef]
    [Google Scholar]
  18. Young K. T., Davis L. M., Dirita V. J. 2007; Campylobacter jejuni : molecular biology and pathogenesis. Nat Rev Microbiol 5:665–679 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.019315-0
Loading
/content/journal/jmm/10.1099/jmm.0.019315-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed