1887

Abstract

As there is currently no licensed vaccine against , the causative agent of tularaemia, the bacterium is an agent of concern as a potential bioweapon. Although has a low infectious dose and high associated mortality, it possesses few classical virulence factors. An analysis of the subspecies genome sequence has revealed the presence of a region containing genes with low sequence homology to part of the operon of . We have generated an isogenic mutant of subspecies SchuS4 and shown it to be attenuated. Furthermore, using BALB/c mice, we have demonstrated that this strain affords protection against significant homologous challenge with the wild-type strain. These data have important implications for the development of a defined and efficacious tularaemia vaccine.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.018911-0
2010-11-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/jmm/59/11/1275.html?itemId=/content/journal/jmm/10.1099/jmm.0.018911-0&mimeType=html&fmt=ahah

References

  1. Alkhuder, K., Meibom, K. L., Dubail, I., Dupuis, M. & Charbit, A. ( 2009; ). Glutathione provides a source of cysteine essential for intracellular multiplication of Francisella tularensis. PLoS Pathog 5, e1000284.[CrossRef]
    [Google Scholar]
  2. Anthony, L. S., Ghadirian, E., Nestel, F. P. & Kongshavn, P. A. ( 1989; ). The requirement for gamma interferon in resistance of mice to experimental tularemia. Microb Pathog 7, 421–428.[CrossRef]
    [Google Scholar]
  3. Burke, D. S. ( 1977; ). Immunization against tularemia: analysis of the effectiveness of live Francisella tularensis vaccine in prevention of laboratory-acquired tularemia. J Infect Dis 135, 55–60.[CrossRef]
    [Google Scholar]
  4. Candela, T. & Fouet, A. ( 2005; ). Bacillus anthracis CapD, belonging to the gamma-glutamyltranspeptidase family, is required for the covalent anchoring of capsule to peptidoglycan. Mol Microbiol 57, 717–726.[CrossRef]
    [Google Scholar]
  5. Candela, T. & Fouet, A. ( 2006; ). Poly-gamma-glutamate in bacteria. Mol Microbiol 60, 1091–1098.[CrossRef]
    [Google Scholar]
  6. Candela, T., Moya, M., Haustant, M. & Fouet, A. ( 2009; ). Fusobacterium nucleatum, the first Gram-negative bacterium demonstrated to produce polyglutamate. Can J Microbiol 55, 627–632.[CrossRef]
    [Google Scholar]
  7. Chamberlain, R. E. ( 1965; ). Evaluation of live tularemia vaccine prepared in a chemically defined medium. Appl Microbiol 13, 232–235.
    [Google Scholar]
  8. Chen, W., Shen, H., Webb, A., KuoLee, R. & Conlan, J. W. ( 2003; ). Tularemia in BALB/c and C57BL/6 mice vaccinated with Francisella tularensis LVS and challenged intradermally, or by aerosol with virulent isolates of the pathogen: protection varies depending on pathogen virulence, route of exposure, and host genetic background. Vaccine 21, 3690–3700.[CrossRef]
    [Google Scholar]
  9. Cherwonogrodzky, J. W., Knodel, M. H. & Spence, M. R. ( 1994; ). Increased encapsulation and virulence of Francisella tularensis live vaccine strain (LVS) by subculturing on synthetic medium. Vaccine 12, 773–775.[CrossRef]
    [Google Scholar]
  10. Conlan, J. W., Sjostedt, A. & North, R. J. ( 1994; ). CD4+ and CD8+ T-cell-dependent and -independent host defense mechanisms can operate to control and resolve primary and secondary Francisella tularensis LVS infection in mice. Infect Immun 62, 5603–5607.
    [Google Scholar]
  11. Conlan, J. W., Shen, H., Golovliov, I., Zingmark, C., Oyston, P. C., Chen, W., House, R. V. & Sjostedt, A. ( 2010; ). Differential ability of novel attenuated targeted deletion mutants of Francisella tularensis subspecies tularensis strain SCHU S4 to protect mice against aerosol challenge with virulent bacteria: effects of host background and route of immunization. Vaccine 28, 1824–1831.[CrossRef]
    [Google Scholar]
  12. Drysdale, M., Heninger, S., Hutt, J., Chen, Y., Lyons, C. R. & Koehler, T. M. ( 2005; ). Capsule synthesis by Bacillus anthracis is required for dissemination in murine inhalation anthrax. EMBO J 24, 221–227.[CrossRef]
    [Google Scholar]
  13. Eyles, J. E., Unal, B., Hartley, M. G., Newstead, S. L., Flick-Smith, H., Prior, J. L., Oyston, P. C. F., Randall, A., Mu, Y. & other authors ( 2007; ). Immunodominant Francisella tularensis antigens identified using proteome microarray. Proteomics 7, 2172–2183.[CrossRef]
    [Google Scholar]
  14. Fortier, A. H., Slayter, M. V., Ziemba, R., Meltzer, M. S. & Nacy, C. A. ( 1991; ). Live vaccine strain of Francisella tularensis: infection and immunity in mice. Infect Immun 59, 2922–2928.
    [Google Scholar]
  15. Golovliov, I., Sjostedt, A., Mokrievich, A. & Pavlov, V. ( 2003; ). A method for allelic replacement in Francisella tularensis. FEMS Microbiol Lett 222, 273–280.[CrossRef]
    [Google Scholar]
  16. Hood, A. M. ( 1977; ). Virulence factors of Francisella tularensis. J Hyg (Lond) 79, 47–60.[CrossRef]
    [Google Scholar]
  17. Khan, A. S., Morse, S. & Lillibridge, S. ( 2000; ). Public-health preparedness for biological terrorism in the USA. Lancet 356, 1179–1182.[CrossRef]
    [Google Scholar]
  18. Kocianova, S., Vuong, C., Yao, Y., Voyich, J. M., Fischer, E. R., DeLeo, F. R. & Otto, M. ( 2005; ). Key role of poly-gamma-dl-glutamic acid in immune evasion and virulence of Staphylococcus epidermidis. J Clin Invest 115, 688–694.[CrossRef]
    [Google Scholar]
  19. Larsson, P., Oyston, P. C. F., Chain, P., Chu, M. C., Duffield, M., Fuxelius, H.-H., Garcia, E., Hälltorp, G., Johansson, D. & other authors ( 2005; ). The complete genome sequence of Francisella tularensis, the causative agent of tularemia. Nat Genet 37, 153–159.[CrossRef]
    [Google Scholar]
  20. Livak, K. J. & Schmittgen, T. D. ( 2001; ). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔ C T Method. Methods 25, 402–408.[CrossRef]
    [Google Scholar]
  21. Makino, S., Uchida, I., Terakado, N., Sasakawa, C. & Yoshikawa, M. ( 1989; ). Molecular characterization and protein analysis of the cap region, which is essential for encapsulation in Bacillus anthracis. J Bacteriol 171, 722–730.
    [Google Scholar]
  22. McCrumb, F. R. ( 1961; ). Aerosol infection of man with Pasteurella tularensis. Bacteriol Rev 25, 262–267.
    [Google Scholar]
  23. Meibom, K. L., Forslund, A. L., Kuoppa, K., Alkhuder, K., Dubail, I., Dupuis, M., Forsberg, A. & Charbit, A. ( 2009; ). Hfq, a novel pleiotropic regulator of virulence-associated genes in Francisella tularensis. Infect Immun 77, 1866–1880.[CrossRef]
    [Google Scholar]
  24. Merabishvili, M., Natidze, M., Rigvava, S., Brusetti, L., Raddadi, N., Borin, S., Chanishvili, N., Tediashvili, M., Sharp, R. & other authors ( 2006; ). Diversity of Bacillus anthracis strains in Georgia and of vaccine strains from the former Soviet Union. Appl Environ Microbiol 72, 5631–5636.[CrossRef]
    [Google Scholar]
  25. Norqvist, A., Kuoppa, K. & Sandström, G. ( 1996; ). Construction of a shuttle vector for use in Francisella tularensis. FEMS Immunol Med Microbiol 13, 257–260.[CrossRef]
    [Google Scholar]
  26. Olsufiev, N. G., Emelyanova, O. S. & Dunayeva, T. N. ( 1959; ). Comparative study of strains of B. tularense in the old and new world and their taxonomy. J Hyg Epidemiol Microbiol Immunol 3, 138–149.
    [Google Scholar]
  27. Oyston, P. C. ( 2008; ). Francisella tularensis: unravelling the secrets of an intracellular pathogen. J Med Microbiol 57, 921–930.[CrossRef]
    [Google Scholar]
  28. Oyston, P. C. ( 2009; ). Francisella tularensis vaccines. Vaccine 27, D48–D51.[CrossRef]
    [Google Scholar]
  29. Oyston, P. C. F., Sjöstedt, A. & Titball, R. W. ( 2004; ). Tularaemia: bioterrorism defence renews interest in Francisella tularensis. Nat Rev Microbiol 2, 967–978.[CrossRef]
    [Google Scholar]
  30. Pechous, R. D., McCarthy, T. R., Mohapatra, N. P., Soni, S., Penoske, R. M., Salzman, N. H., Frank, D. W., Gunn, J. S. & Zahrt, T. C. ( 2008; ). A Francisella tularensis Schu S4 purine auxotroph is highly attenuated in mice but offers limited protection against homologous intranasal challenge. PLoS ONE 3, e2487.[CrossRef]
    [Google Scholar]
  31. Qin, A., Scott, D. W. & Mann, B. J. ( 2008; ). Francisella tularensis subsp. tularensis Schu S4 disulfide bond formation protein B, but not an RND-type efflux pump, is required for virulence. Infect Immun 76, 3086–3092.[CrossRef]
    [Google Scholar]
  32. Qin, A., Scott, D. W., Thompson, J. A. & Mann, B. J. ( 2009; ). Identification of an essential Francisella tularensis subsp. tularensis virulence factor. Infect Immun 77, 152–161.[CrossRef]
    [Google Scholar]
  33. Ravel, J., Jiang, L., Stanley, S. T., Wilson, M. R., Decker, R. S., Read, T. D., Worsham, P., Keim, P. S., Salzberg, S. L. & other authors ( 2009; ). The complete genome sequence of Bacillus anthracis Ames “Ancestor”. J Bacteriol 191, 445–446.[CrossRef]
    [Google Scholar]
  34. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY. : Cold Spring Harbor Laboratory.
    [Google Scholar]
  35. Sandström, G., Löfgren, S. & Tärnvik, A. ( 1988; ). A capsule-deficient mutant of Francisella tularensis LVS exhibits enhanced sensitivity to killing by serum but diminished sensitivity to killing by polymorphonuclear leukocytes. Infect Immun 56, 1194–1202.
    [Google Scholar]
  36. Saslaw, S., Eigelsbach, H. T., Prior, J. A., Wilson, H. E. & Carhart, S. ( 1961a; ). Tularemia vaccine study. II. Respiratory challenge. Arch Intern Med 107, 702–714.[CrossRef]
    [Google Scholar]
  37. Saslaw, S., Eigelsbach, H. T., Wilson, H. E., Prior, J. A. & Carhart, S. ( 1961b; ). Tularemia vaccine study. I. Intracutaneous challenge. Arch Intern Med 107, 689–701.[CrossRef]
    [Google Scholar]
  38. Simon, P., Priefer, U. & Pühler, A. ( 1983; ). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Nat Biotechnol 1, 784–791.[CrossRef]
    [Google Scholar]
  39. Straskova, A., Pavkova, I., Link, M., Forslund, A.-L., Kuoppa, K., Noppa, L., Kroca, M., Fucikova, A., Klimentova, J. & other authors ( 2009; ). Proteome analysis of an attenuated Francisella tularensis dsbA mutant: identification of potential DsbA substrate proteins. J Proteome Res 8, 5336–5346.[CrossRef]
    [Google Scholar]
  40. Su, J., Yang, J., Zhao, D., Kawula, T. H., Banas, J. A. & Zhang, J. R. ( 2007; ). Genome-wide identification of Francisella tularensis virulence determinants. Infect Immun 75, 3089–3101.[CrossRef]
    [Google Scholar]
  41. Tärnvik, A. ( 1989; ). Nature of protective immunity to Francisella tularensis. Rev Infect Dis 11, 440–451.[CrossRef]
    [Google Scholar]
  42. Thomas, R. M., Titball, R. W., Oyston, P. C. F., Griffin, K., Waters, E., Hitchen, P. G., Michell, S. L., Grice, I. D., Wilson, J. C. & Prior, J. L. ( 2007; ). The immunologically distinct O antigens from Francisella tularensis subspecies tularensis and Francisella novicida are both virulence determinants and protective antigens. Infect Immun 75, 371–378.[CrossRef]
    [Google Scholar]
  43. Twine, S., Byström, M., Chen, W., Forsman, M., Golovliov, I., Johansson, A., Kelly, J., Lindgren, H., Svensson, K. & other authors ( 2005; ). A mutant of Francisella tularensis strain SCHU S4 lacking the ability to express a 58-kilodalton protein is attenuated for virulence and is an effective live vaccine. Infect Immun 73, 8345–8352.[CrossRef]
    [Google Scholar]
  44. Weiss, D. S., Brotcke, A., Henry, T., Margolis, J. J., Chan, K. & Monack, D. M. ( 2007; ). In vivo negative selection screen identifies genes required for Francisella virulence. Proc Natl Acad Sci U S A 104, 6037–6042.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.018911-0
Loading
/content/journal/jmm/10.1099/jmm.0.018911-0
Loading

Data & Media loading...

vol. , part 11, pp. 1275 - 1284

[ PDF file] (52 KB)

Resistance of SchuS4D ::Cam to complete guinea pig serum. A total of 10 c.f.u. SchuS4 (circles) or SchuS4D ::Cam (squares) were incubated for 18 h at 37 °C in Chamberlain’s defined medium alone (black circles, black squares) or in guinea pig serum reconstituted in Chamberlain’s defined medium (white circles, white squares). The absorbance at 600 nm was measured for each culture and the data presented as means and SEM of duplicate cultures.



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error