1887

Abstract

As there is currently no licensed vaccine against , the causative agent of tularaemia, the bacterium is an agent of concern as a potential bioweapon. Although has a low infectious dose and high associated mortality, it possesses few classical virulence factors. An analysis of the subspecies genome sequence has revealed the presence of a region containing genes with low sequence homology to part of the operon of . We have generated an isogenic mutant of subspecies SchuS4 and shown it to be attenuated. Furthermore, using BALB/c mice, we have demonstrated that this strain affords protection against significant homologous challenge with the wild-type strain. These data have important implications for the development of a defined and efficacious tularaemia vaccine.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.018911-0
2010-11-01
2021-04-21
Loading full text...

Full text loading...

/deliver/fulltext/jmm/59/11/1275.html?itemId=/content/journal/jmm/10.1099/jmm.0.018911-0&mimeType=html&fmt=ahah

References

  1. Alkhuder K., Meibom K. L., Dubail I., Dupuis M., Charbit A. 2009; Glutathione provides a source of cysteine essential for intracellular multiplication of Francisella tularensis . PLoS Pathog 5:e1000284 [CrossRef]
    [Google Scholar]
  2. Anthony L. S., Ghadirian E., Nestel F. P., Kongshavn P. A. 1989; The requirement for gamma interferon in resistance of mice to experimental tularemia. Microb Pathog 7:421–428 [CrossRef]
    [Google Scholar]
  3. Burke D. S. 1977; Immunization against tularemia: analysis of the effectiveness of live Francisella tularensis vaccine in prevention of laboratory-acquired tularemia. J Infect Dis 135:55–60 [CrossRef]
    [Google Scholar]
  4. Candela T., Fouet A. 2005; Bacillus anthracis CapD, belonging to the gamma-glutamyltranspeptidase family, is required for the covalent anchoring of capsule to peptidoglycan. Mol Microbiol 57:717–726 [CrossRef]
    [Google Scholar]
  5. Candela T., Fouet A. 2006; Poly-gamma-glutamate in bacteria. Mol Microbiol 60:1091–1098 [CrossRef]
    [Google Scholar]
  6. Candela T., Moya M., Haustant M., Fouet A. 2009; Fusobacterium nucleatum , the first Gram-negative bacterium demonstrated to produce polyglutamate. Can J Microbiol 55:627–632 [CrossRef]
    [Google Scholar]
  7. Chamberlain R. E. 1965; Evaluation of live tularemia vaccine prepared in a chemically defined medium. Appl Microbiol 13:232–235
    [Google Scholar]
  8. Chen W., Shen H., Webb A., KuoLee R., Conlan J. W. 2003; Tularemia in BALB/c and C57BL/6 mice vaccinated with Francisella tularensis LVS and challenged intradermally, or by aerosol with virulent isolates of the pathogen: protection varies depending on pathogen virulence, route of exposure, and host genetic background. Vaccine 21:3690–3700 [CrossRef]
    [Google Scholar]
  9. Cherwonogrodzky J. W., Knodel M. H., Spence M. R. 1994; Increased encapsulation and virulence of Francisella tularensis live vaccine strain (LVS) by subculturing on synthetic medium. Vaccine 12:773–775 [CrossRef]
    [Google Scholar]
  10. Conlan J. W., Sjostedt A., North R. J. 1994; CD4+ and CD8+ T-cell-dependent and -independent host defense mechanisms can operate to control and resolve primary and secondary Francisella tularensis LVS infection in mice. Infect Immun 62:5603–5607
    [Google Scholar]
  11. Conlan J. W., Shen H., Golovliov I., Zingmark C., Oyston P. C., Chen W., House R. V., Sjostedt A. 2010; Differential ability of novel attenuated targeted deletion mutants of Francisella tularensis subspecies tularensis strain SCHU S4 to protect mice against aerosol challenge with virulent bacteria: effects of host background and route of immunization. Vaccine 28:1824–1831 [CrossRef]
    [Google Scholar]
  12. Drysdale M., Heninger S., Hutt J., Chen Y., Lyons C. R., Koehler T. M. 2005; Capsule synthesis by Bacillus anthracis is required for dissemination in murine inhalation anthrax. EMBO J 24:221–227 [CrossRef]
    [Google Scholar]
  13. Eyles J. E., Unal B., Hartley M. G., Newstead S. L., Flick-Smith H., Prior J. L., Oyston P. C. F., Randall A., Mu Y. other authors 2007; Immunodominant Francisella tularensis antigens identified using proteome microarray. Proteomics 7:2172–2183 [CrossRef]
    [Google Scholar]
  14. Fortier A. H., Slayter M. V., Ziemba R., Meltzer M. S., Nacy C. A. 1991; Live vaccine strain of Francisella tularensis : infection and immunity in mice. Infect Immun 59:2922–2928
    [Google Scholar]
  15. Golovliov I., Sjostedt A., Mokrievich A., Pavlov V. 2003; A method for allelic replacement in Francisella tularensis . FEMS Microbiol Lett 222:273–280 [CrossRef]
    [Google Scholar]
  16. Hood A. M. 1977; Virulence factors of Francisella tularensis . J Hyg (Lond 79:47–60 [CrossRef]
    [Google Scholar]
  17. Khan A. S., Morse S., Lillibridge S. 2000; Public-health preparedness for biological terrorism in the USA. Lancet 356:1179–1182 [CrossRef]
    [Google Scholar]
  18. Kocianova S., Vuong C., Yao Y., Voyich J. M., Fischer E. R., DeLeo F. R., Otto M. 2005; Key role of poly-gamma-dl-glutamic acid in immune evasion and virulence of Staphylococcus epidermidis . J Clin Invest 115:688–694 [CrossRef]
    [Google Scholar]
  19. Larsson P., Oyston P. C. F., Chain P., Chu M. C., Duffield M., Fuxelius H.-H., Garcia E., Hälltorp G., Johansson D. other authors 2005; The complete genome sequence of Francisella tularensis , the causative agent of tularemia. Nat Genet 37:153–159 [CrossRef]
    [Google Scholar]
  20. Livak K. J., Schmittgen T. D. 2001; Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔ C T Method. Methods 25:402–408 [CrossRef]
    [Google Scholar]
  21. Makino S., Uchida I., Terakado N., Sasakawa C., Yoshikawa M. 1989; Molecular characterization and protein analysis of the cap region, which is essential for encapsulation in Bacillus anthracis . J Bacteriol 171:722–730
    [Google Scholar]
  22. McCrumb F. R. 1961; Aerosol infection of man with Pasteurella tularensis . Bacteriol Rev 25:262–267
    [Google Scholar]
  23. Meibom K. L., Forslund A. L., Kuoppa K., Alkhuder K., Dubail I., Dupuis M., Forsberg A., Charbit A. 2009; Hfq, a novel pleiotropic regulator of virulence-associated genes in Francisella tularensis . Infect Immun 77:1866–1880 [CrossRef]
    [Google Scholar]
  24. Merabishvili M., Natidze M., Rigvava S., Brusetti L., Raddadi N., Borin S., Chanishvili N., Tediashvili M., Sharp R. other authors 2006; Diversity of Bacillus anthracis strains in Georgia and of vaccine strains from the former Soviet Union. Appl Environ Microbiol 72:5631–5636 [CrossRef]
    [Google Scholar]
  25. Norqvist A., Kuoppa K., Sandström G. 1996; Construction of a shuttle vector for use in Francisella tularensis . FEMS Immunol Med Microbiol 13:257–260 [CrossRef]
    [Google Scholar]
  26. Olsufiev N. G., Emelyanova O. S., Dunayeva T. N. 1959; Comparative study of strains of B. tularense in the old and new world and their taxonomy. J Hyg Epidemiol Microbiol Immunol 3:138–149
    [Google Scholar]
  27. Oyston P. C. 2008; Francisella tularensis : unravelling the secrets of an intracellular pathogen. J Med Microbiol 57:921–930 [CrossRef]
    [Google Scholar]
  28. Oyston P. C. 2009; Francisella tularensis vaccines. Vaccine 27:D48–D51 [CrossRef]
    [Google Scholar]
  29. Oyston P. C. F., Sjöstedt A., Titball R. W. 2004; Tularaemia: bioterrorism defence renews interest in Francisella tularensis . Nat Rev Microbiol 2:967–978 [CrossRef]
    [Google Scholar]
  30. Pechous R. D., McCarthy T. R., Mohapatra N. P., Soni S., Penoske R. M., Salzman N. H., Frank D. W., Gunn J. S., Zahrt T. C. 2008; A Francisella tularensis Schu S4 purine auxotroph is highly attenuated in mice but offers limited protection against homologous intranasal challenge. PLoS ONE 3:e2487 [CrossRef]
    [Google Scholar]
  31. Qin A., Scott D. W., Mann B. J. 2008; Francisella tularensis subsp. tularensis Schu S4 disulfide bond formation protein B, but not an RND-type efflux pump, is required for virulence. Infect Immun 76:3086–3092 [CrossRef]
    [Google Scholar]
  32. Qin A., Scott D. W., Thompson J. A., Mann B. J. 2009; Identification of an essential Francisella tularensis subsp. tularensis virulence factor. Infect Immun 77:152–161 [CrossRef]
    [Google Scholar]
  33. Ravel J., Jiang L., Stanley S. T., Wilson M. R., Decker R. S., Read T. D., Worsham P., Keim P. S., Salzberg S. L. other authors 2009; The complete genome sequence of Bacillus anthracis Ames “Ancestor”. J Bacteriol 191:445–446 [CrossRef]
    [Google Scholar]
  34. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  35. Sandström G., Löfgren S., Tärnvik A. 1988; A capsule-deficient mutant of Francisella tularensis LVS exhibits enhanced sensitivity to killing by serum but diminished sensitivity to killing by polymorphonuclear leukocytes. Infect Immun 56:1194–1202
    [Google Scholar]
  36. Saslaw S., Eigelsbach H. T., Prior J. A., Wilson H. E., Carhart S. 1961a; Tularemia vaccine study. II. Respiratory challenge. Arch Intern Med 107:702–714 [CrossRef]
    [Google Scholar]
  37. Saslaw S., Eigelsbach H. T., Wilson H. E., Prior J. A., Carhart S. 1961b; Tularemia vaccine study. I. Intracutaneous challenge. Arch Intern Med 107:689–701 [CrossRef]
    [Google Scholar]
  38. Simon P., Priefer U., Pühler A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Nat Biotechnol 1:784–791 [CrossRef]
    [Google Scholar]
  39. Straskova A., Pavkova I., Link M., Forslund A.-L., Kuoppa K., Noppa L., Kroca M., Fucikova A., Klimentova J. other authors 2009; Proteome analysis of an attenuated Francisella tularensis dsbA mutant: identification of potential DsbA substrate proteins. J Proteome Res 8:5336–5346 [CrossRef]
    [Google Scholar]
  40. Su J., Yang J., Zhao D., Kawula T. H., Banas J. A., Zhang J. R. 2007; Genome-wide identification of Francisella tularensis virulence determinants. Infect Immun 75:3089–3101 [CrossRef]
    [Google Scholar]
  41. Tärnvik A. 1989; Nature of protective immunity to Francisella tularensis . Rev Infect Dis 11:440–451 [CrossRef]
    [Google Scholar]
  42. Thomas R. M., Titball R. W., Oyston P. C. F., Griffin K., Waters E., Hitchen P. G., Michell S. L., Grice I. D., Wilson J. C., Prior J. L. 2007; The immunologically distinct O antigens from Francisella tularensis subspecies tularensis and Francisella novicida are both virulence determinants and protective antigens. Infect Immun 75:371–378 [CrossRef]
    [Google Scholar]
  43. Twine S., Byström M., Chen W., Forsman M., Golovliov I., Johansson A., Kelly J., Lindgren H., Svensson K. other authors 2005; A mutant of Francisella tularensis strain SCHU S4 lacking the ability to express a 58-kilodalton protein is attenuated for virulence and is an effective live vaccine. Infect Immun 73:8345–8352 [CrossRef]
    [Google Scholar]
  44. Weiss D. S., Brotcke A., Henry T., Margolis J. J., Chan K., Monack D. M. 2007; In vivo negative selection screen identifies genes required for Francisella virulence. Proc Natl Acad Sci U S A 104:6037–6042 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.018911-0
Loading
/content/journal/jmm/10.1099/jmm.0.018911-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error