Inhibition of neutrophil function following exposure to the toxin fumagillin Free

Abstract

The filamentous fungus produces a variety of enzymes and toxins that may facilitate fungal colonization of tissue and evasion of the host immune response. One such toxin, fumagillin, was investigated for its ability to inhibit the action of neutrophils, which are a central component of the innate immune response to microbial infection. Neutrophils exposed to 2 μg fumagillin ml for 25 min showed a significantly reduced ability to kill yeast cells (<0.02), to phagocytose conidia of (<0.023) and to consume oxygen (<0.032). The ability of neutrophils to generate superoxide is dependent upon the action of a functional NADPH oxidase complex which is composed of cytosolic (p40, p47, p67, Rac2) and membrane (gp91) proteins. Exposure of neutrophils to fumagillin inhibited the formation of the NADPH oxidase complex by blocking the translocation of p47 from the cytosolic to the membrane fraction (=0.02). In addition to the production of superoxide, neutrophils also undergo degranulation, which leads to the release of proteolytic enzymes that contribute to the microbicidal activity of the cell. Fumagillin-treated neutrophils showed reduced degranulation as evidenced by lower myeloperoxidase activity (<0.019). Fumagillin-treated cells demonstrated reduced levels of F-actin, thus indicating that retarding the formation of F-actin may contribute to the inhibition of the structural rearrangements required in the activated neutrophil. This work indicates that fumagillin may contribute to reducing the local immune response by altering the activity of neutrophils and thus facilitate the continued persistence and growth of in the host.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.018192-0
2010-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/59/6/625.html?itemId=/content/journal/jmm/10.1099/jmm.0.018192-0&mimeType=html&fmt=ahah

References

  1. Amitani R., Murayama T., Nawada R., Lee W. J., Niimi A., Suzuki K., Tanaka E., Kuze F. 1995; Aspergillus culture filtrates and sputum sols from patients with pulmonary aspergillosis cause damage to human respiratory ciliated epithelium in vitro. Eur Respir J 8:1681–1687 [CrossRef]
    [Google Scholar]
  2. Babior B. M., Kipnes R. S., Curnette J. T. 1973; Biological defence mechanisms: the production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest 52:741–744 [CrossRef]
    [Google Scholar]
  3. Bellocchio S., Moretti S., Perrucio K., Fallarino F., Bozza S., Montagnol C., Mosci P., Lipford G. B., Pitzurra L., Romaini L. 2004; TLRs govern neutrophil activity in aspergillosis. J Immunol 173:7406–7415 [CrossRef]
    [Google Scholar]
  4. Brakhage A. A., Langfelder K. 2002; Menacing mold: the molecular biology of Aspergillus fumigatus . Annu Rev Microbiol 56:433–455 [CrossRef]
    [Google Scholar]
  5. Brookman J. L., Denning D. W. 2000; Molecular genetics in Aspergillus fumigatus . Curr Opin Microbiol 3:468–474 [CrossRef]
    [Google Scholar]
  6. Comera C., Andre K., Laffitte K., Collet X., Galtier P., Maridonneau-Parini I. 2007; Gliotoxin from Aspergillus fumigatus affects phagocytosis and organization of the actin cytoskeleton by distinct signaling pathways in human neutrophils. Microbes Infect 9:47–54 [CrossRef]
    [Google Scholar]
  7. Curnutte J. T., Kuver R., Babior B. M. 1987; Activation of the respiratory burst oxidase in a fully soluble system from human neutrophils. J Biol Chem 262:6450–6452
    [Google Scholar]
  8. Daly P., Kavanagh K. 2002; Immobilization of Aspergillus fumigatus colonies in a soft agar matrix allows visualisation of A549 cell detachment and death. Med Mycol 40:27–33 [CrossRef]
    [Google Scholar]
  9. de Mendez I., Leto T. 1995; Functional reconstitution of the phagocyte NADPH oxidase by transfection of its multiple components in a heterologous system. Blood 85:1104
    [Google Scholar]
  10. Diesenhouse M. C., Wilson L. A., Corrent G. F., Visvesvara G. S., Grossniklaus H. E., Bryan R. T. 1993; Treatment of microsporidial keratoconjunctivitis with topical fumagillin. Am J Ophthalmol 115:293–298 [CrossRef]
    [Google Scholar]
  11. Duff C., Murphy P. G., Callaghan M., McClean S. 2006; Differences in invasion and translocation of Burkholderia cepacia complex species in polarized lung epithelial cells in vitro. Microb Pathog 41:183–192 [CrossRef]
    [Google Scholar]
  12. Eichner R. D., Al Salami M., Wood P. R., Mullbacher A. 1986; The effect of gliotoxin upon macrophage function. Int J Immunopharmacol 8:789–797 [CrossRef]
    [Google Scholar]
  13. Festini F., Buzzetti R., Bassi C., Braggion C., Salvatore D., Tacetti G., Mastella G. 2006; Isolation measures for the prevention of infection with respiratory pathogens in cystic fibrosis: a systematic review. J Hosp Infect 64:1–6 [CrossRef]
    [Google Scholar]
  14. Fuchs A., Dagher M. C., Vignais P. V. 1995; Mapping the domains of interaction of p40phox and p67phox of the neutrophil oxidase complex using the two hybrid system. J Biol Chem 270:5695–5697 [CrossRef]
    [Google Scholar]
  15. Fuchs A., Dagher M. C., Faure J., Vignais P. V. 1996; Topological organization of the cytosolic activating complex of the superoxide generating NADPH oxidase. Pinpointing the sites of interaction between p47phox, p67phox and p40phox using the two-hybrid system. Biochim Biophys Acta 1312:39–47 [CrossRef]
    [Google Scholar]
  16. Ingber D., Fujita T., Kishimoto S., Sudo K., Kanamaru T., Brem H., Folkman J. 1990; Synthetic analogues of fumagillin that inhibit angiogenesis and suppress tumour growth. Nature 348:555–557 [CrossRef]
    [Google Scholar]
  17. Malech H. L., Nauseef W. M. 1997; Primary inherited defects in neutrophil function: etiology and treatment. Semin Hematol 34:279–290
    [Google Scholar]
  18. McCowen M. C., Callender M. E., Lawls J. F. 1951; Fumagillin (H3), a new antibiotic with amebicidal properties. Science 113:202–203 [CrossRef]
    [Google Scholar]
  19. Misu M., Furukawa H., Kwon H. J., Shikinaka K., Kakugo A., Satoh T., Osada Y., Gong J. P. 2009; Photoinduced in-situ formation of various F-actin assemblies with a photoresponsive polycation. J Biomed Mater Res A 89:424–431
    [Google Scholar]
  20. Mitchell C. G., Slight J., Donaldson K. 1997; Diffusable component from the spore surface of Aspergillus fumigatus which inhibits the macrophage oxidative burst is distinct from gliotoxin and other hyphal toxins. Thorax 52:796–801 [CrossRef]
    [Google Scholar]
  21. Mizuki K., Takeya R., Kuribayashi F., Nobuhisa I., Kohda D., Nunoi H., Takeshige K., Sumimoto H. 2005; A region C-terminal to the proline rich core of p47phox regulates activation of the phagocyte NADPH oxidase by interacting with the C-terminal SH3 domain of p67phox . Arch Biochem Biophys 444:185–194 [CrossRef]
    [Google Scholar]
  22. Molina J. M., Goguel J., Sarfati C., Michiels J. F., Desportes-Livage I., Balkan S., Chastang C., Cotte L., Maslo C. other authors 2000; Trial of oral fumagillin for the treatment of intestinal microsporidiosis in patients with HIV infection. AIDS 14:1341–1348 [CrossRef]
    [Google Scholar]
  23. Orciuolo E., Stanzani M., Canestrano M., Galimberti S., Carulli G., Lewis R., Petrini M., Komanduri K. V. 2007; Effects of Aspergillus fumigatus gliotoxin and methylprednisolone on human neutrophils: implications for the pathogenesis of invasive aspergillosis. J Leukoc Biol 82:839–848 [CrossRef]
    [Google Scholar]
  24. Reeves E. P., Lu H., Jacobs H. L., Messina C. G., Bolsover S., Gabella G., Potma E. O., Warley A., Roes J., Segal A. W. 2002; Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature 416:291–296 [CrossRef]
    [Google Scholar]
  25. Rementeria A., López-Molina N., Ludwig A., Vivanco A. B., Bikandi J., Pontón J., Garaizar J. 2005; Genes and molecules involved in Aspergillus fumigatus virulence. Rev Iberoam Micol 22:1–23 [CrossRef]
    [Google Scholar]
  26. Renwick J., Reeves E. P., Wientjes F. B., Kavanagh K. 2007; Translocation of proteins homologous to human neutrophil p47phox and p67phox to the cell membrane in activated haemocytes of Galleria mellonella . Dev Comp Immunol 31:347–359 [CrossRef]
    [Google Scholar]
  27. Segal A. W., Coade S. B. 1978; Kinetics of oxygen consumption by phagocytosing human neutrophils. Biochem Biophys Res Commun 84:611–617 [CrossRef]
    [Google Scholar]
  28. Segal A. W., Jones O. T. G. 1978; Novel cytochrome b system in phagocytic vacuoles from human granulocytes. Nature 276:515–517 [CrossRef]
    [Google Scholar]
  29. Spitznagel J. K. 1990; Antibiotic proteins of human neutrophils. J Clin Invest 86:1381–1386 [CrossRef]
    [Google Scholar]
  30. Standish A. J., Weiser J. N. 2009; Human neutrophils kill Streptococcus pneumoniae via serine proteases. J Immun 183:2602–2609 [CrossRef]
    [Google Scholar]
  31. Stevanovic J., Stanimirovic Z., Radakovic M., Stojic V. 2008; In vitro evaluation of the clastogenicity of fumagillin. Environ Mol Mutagen 49:594–601 [CrossRef]
    [Google Scholar]
  32. Sumimoto H., Hata K., Mizuki K., Ito T., Kage Y., Sakaki Y., Fukumaki Y., Nakamura M., Takeshige K. 1996; Assembly and activation of the phagocyte NADPH oxidase. Specific interaction of the N-terminal Src homology 3 domain of p47phox with p22phox is required for activation of the NADPH oxidase. J Biol Chem 271:22152–22158 [CrossRef]
    [Google Scholar]
  33. Sutton P., Newcombe N. R., Waring P., Mullbacher A. 1994; In vitro immunosuppressive activity of gliotoxin, a metabolite produced by human pathogenic fungi. Infect Immun 62:1192–1198
    [Google Scholar]
  34. Sutton P., Waring P., Mulbacher A. P. 1996; Exacerbation of invasive aspergillosis by the immunosuppressive fungal metabolite gliotoxin. Immunol Cell Biol 74:318–322 [CrossRef]
    [Google Scholar]
  35. Tekaia F., Latgé J. P. 2005; Aspergillus fumigatus : saprophyte or pathogen. Curr Opin Microbiol 8:385–392 [CrossRef]
    [Google Scholar]
  36. Thrasher A. J., Keep N. H., Wientjes F., Segal A. W. 1994; Chronic granulomatous disease. Biochim Biophys Acta 1227:1–24 [CrossRef]
    [Google Scholar]
  37. Tsunawaki S., Yoshida L., Nishida S., Kobayashi T., Shimoyama T. 2004; Fungal metabolite gliotoxin inhibits assembly of the human respiratory burst NADPH oxidase. Infect Immun 72:3373–3382 [CrossRef]
    [Google Scholar]
  38. Wallach T. M., Segal A. W. 1996; Stoichiometry of the subunits of flavocytochrome b558 of the NADPH oxidase of phagocytes. Biochem J 320:33–38
    [Google Scholar]
  39. Wientjes F. B., Hsuan J. J., Totty N. F., Segal A. W. 1993; p40phox, a third activation complex of the NADPH oxidase to contain SH3 domains. Biochem J 296:557–562
    [Google Scholar]
  40. Yürüker B., Niggli V. 1992; α -Actinin and vinculin in human neutrophils: reorganization during adhesion and relation to the actin network. J Cell Sci 101:403–414
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.018192-0
Loading
/content/journal/jmm/10.1099/jmm.0.018192-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed