1887

Abstract

Members of the complex (Bcc) are highly resistant to many antibacterial agents and infection can be difficult to eradicate. A coordinated approach has been used to measure the fitness of Bcc bacteria isolated from cystic fibrosis (CF) patients with chronic Bcc infection using methods relevant to Bcc growth and survival conditions. Significant differences in growth rate were observed among isolates; slower growth rates were associated with isolates that exhibited higher MICs and were resistant to more antimicrobial classes. The nucleotide sequences of the quinolone resistance-determining region of in the isolates were determined and the ciprofloxacin MIC correlated with amino acid substitutions at codons 83 and 87. Biologically relevant methods for fitness measurement were developed and could be applied to investigate larger numbers of clinical isolates. These methods were determination of planktonic growth rate, biofilm formation, survival in water and survival during drying. We also describe a method to determine mutation rate in Bcc bacteria. Unlike in where hypermutability has been detected in strains isolated from CF patients, we were unable to demonstrate hypermutability in this panel of and isolates.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.017830-0
2010-06-01
2019-10-13
Loading full text...

Full text loading...

/deliver/fulltext/jmm/59/6/679.html?itemId=/content/journal/jmm/10.1099/jmm.0.017830-0&mimeType=html&fmt=ahah

References

  1. Billington, O. J., McHugh, T. D. & Gillespie, S. H. ( 1999; ). Physiological cost of rifampin resistance induced in vitro in Mycobacterium tuberculosis. Antimicrob Agents Chemother 43, 1866–1869.
    [Google Scholar]
  2. Caraher, E., Duff, C., Mullen, T., McKeon, S., Murphy, P., Callaghan, M. & McClean, S. ( 2006; ). Invasion and biofilm formation of Burkholderia dolosa is comparable with Burkholderia cenocepacia and Burkholderia multivorans. J Cyst Fibros 6, 49–56.
    [Google Scholar]
  3. Chen, F. J. & Lo, H. J. ( 2003; ). Molecular mechanisms of fluoroquinolone resistance. J Microbiol Immunol Infect 36, 1–9.
    [Google Scholar]
  4. NCCLS ( 2006; ). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved Standard, 7th edn, M7-A6. Villanova, PA: National Committee for Clinical Laboratory Standards.
  5. Coenye, T., Vandamme, P., Govan, J. R. W. & LiPuma, J. J. ( 2001; ). Taxonomy and identification of the Burkholderia cepacia complex. J Clin Microbiol 39, 3427–3436.[CrossRef]
    [Google Scholar]
  6. Conway, B. A., Venu, V. & Speert, D. A. ( 2002; ). Biofilm formation and acyl homoserine lactone production in the Burkholderia cepacia complex. J Bacteriol 184, 5678–5685.[CrossRef]
    [Google Scholar]
  7. Drabick, J. A., Gracely, E. J., Heidecker, G. J. & LiPuma, J. J. ( 1996; ). Survival of Burkholderia cepacia on environmental surfaces. J Hosp Infect 32, 267–276.[CrossRef]
    [Google Scholar]
  8. Drlica, K. & Malik, M. ( 2003; ). Fluoroquinolones: action and resistance. Curr Top Med Chem 3, 249–282.[CrossRef]
    [Google Scholar]
  9. Hooper, D. C. ( 2003; ). Resistance to quinolones. In Quinolone Antimicrobial Agents, pp. 41–67. Edited by D. C. Hooper & E. Rubenstein. Washington, DC: American Society for Microbiology.
  10. Hutchinson, G. R., Parker, S., Pryor, J. A., Duncan-Skingle, F., Hoffman, P. N., Hodson, M. E., Kaufmann, M. E. & Pitt, T. L. ( 1996; ). Home-use nebulizers: a potential primary source of Burkholderia cepacia and other colistin-resistant, gram-negative bacteria in patients with cystic fibrosis. J Clin Microbiol 34, 584–587.
    [Google Scholar]
  11. Isles, A., Maclusky, I., Corey, M., Gold, R., Prober, C., Fleming, P. & Levison, H. ( 1984; ). Pseudomonas cepacia infection in cystic fibrosis: an emerging problem. J Pediatr 104, 206–210.[CrossRef]
    [Google Scholar]
  12. Kugelberg, E., Lofmark, S., Wretlind, B. & Andersson, D. I. ( 2005; ). Reduction of the fitness burden of quinolone resistance in Pseudomonas aeruginosa. J Antimicrob Chemother 55, 22–30.
    [Google Scholar]
  13. Lea, D. E. & Coulson, C. A. ( 1949; ). The distribution of the numbers of mutants in bacterial populations. J Genet 49, 264–285.[CrossRef]
    [Google Scholar]
  14. LiPuma, J. J. ( 1998; ). Burkholderia cepacia. Management issues and new insights. Clin Chest Med 19, 473–486.[CrossRef]
    [Google Scholar]
  15. Macia, M. D., Borrell, N., Perez, J. L. & Olivier, A. ( 2004; ). Detection and susceptibility testing of hypermutable Pseudomonas aeruginosa strains with the E test and disk diffusion. Antimicrob Agents Chemother 48, 2665–2672.[CrossRef]
    [Google Scholar]
  16. Mahenthiralingam, E., Bischof, J., Byrne, S. K., Radomski, C., Davies, J. E., Av-Gay, Y. & Vandamme, P. ( 2000; ). DNA-based diagnostic approaches for identification of Burkholderia cepacia complex, Burkholderia vietnamiensis, Burkholderia multivorans, Burkholderia stabilis, and Burkholderia cepacia genomovars I and III. J Clin Microbiol 38, 3165–3173.
    [Google Scholar]
  17. Mahenthiralingam, E., Vandamme, P., Campbell, M. E., Henry, D. A., Gravelle, A. M., Wong, L. T., Davidson, A. G., Wilcox, P. G., Nakielna, B. & Speert, D. P. ( 2001; ). Infection with Burkholderia cepacia complex genomovars in patients with cystic fibrosis: virulent transmissible strains of genomovar III can replace Burkholderia multivorans. Clin Infect Dis 33, 1469–1475.[CrossRef]
    [Google Scholar]
  18. Mahenthiralingam, E., Baldwin, A. & Vandamme, P. ( 2002; ). Burkholderia cepacia complex infection in patients with cystic fibrosis. J Med Microbiol 51, 533–538.
    [Google Scholar]
  19. Mahenthiralingam, E., Urban, T. A. & Goldberg, J. B. ( 2005; ). The multifarious, multireplicon Burkholderia cepacia complex. Nat Rev Microbiol 3, 144–156.[CrossRef]
    [Google Scholar]
  20. Markowitz, V. M., Korzeniewski, F., Palaniappan, K., Szeto, E., Werner, G., Padki, A., Zhao, X., Dubchak, I., Hugenholtz, P. & other authors ( 2006; ). The integrated microbial genomes (IMG) system. Nucleic Acids Res 34, D344–D348.[CrossRef]
    [Google Scholar]
  21. Miles, A. A. & Misra, S. S. ( 1938; ). The estimation of the bactericidal power of the blood. J Hyg (Lond) 38, 732–749.[CrossRef]
    [Google Scholar]
  22. O'Toole, G. A. & Kolter, R. ( 1998; ). Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28, 449–461.[CrossRef]
    [Google Scholar]
  23. Oie, S. & Kamiya, A. ( 1996; ). Microbial contamination of antiseptics and disinfectants. Am J Infect Control 24, 389–395.[CrossRef]
    [Google Scholar]
  24. Oliver, A., Canton, R., Campo, P., Baquero, F. & Blasquez, J. ( 2000; ). High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288, 1251–1254.[CrossRef]
    [Google Scholar]
  25. Oliver, A., Levin, B. R., Juan, C., Baquero, F. & Blasquez, J. ( 2004; ). Hypermutation and the preexistence of antibiotic resistant Pseudomonas aeruginosa mutants: implications for susceptibility testing and treatment of chronic infections. Antimicrob Agents Chemother 48, 4226–4233.[CrossRef]
    [Google Scholar]
  26. Pope, C. F., Gillespie, S. H., Pratten, J. R. & McHugh, T. D. ( 2008; ). Fluoroquinolone resistant mutants of Burkholderia cepacia. Antimicrob Agents Chemother 52, 1201–1203.[CrossRef]
    [Google Scholar]
  27. Sanchez, P., Linares, J. F., Ruiz-Diez, B., Campanario, E., Navas, A., Baquero, F. & Martinez, J. L. ( 2002; ). Fitness of in vitro selected Pseudomonas aeruginosa nalB and nfxB multidrug resistant mutants. J Antimicrob Chemother 50, 657–664.[CrossRef]
    [Google Scholar]
  28. Tavio, M. M., Vila, J., Ruiz, J., Martin-Sanchez, A. M. & Jimenez de Anta, M. T. ( 1999; ). Mechanisms involved in the development of resistance to fluoroquinolones in Escherichia coli isolates. J Antimicrob Chemother 44, 735–742.[CrossRef]
    [Google Scholar]
  29. Vandamme, P., Henry, D., Coenye, T., Nzula, S., Vancanneyt, M., LiPuma, J. J., Speert, D. P., Govan, J. R. & Mahenthiralingam, E. ( 2002; ). Burkholderia anthina sp. nov. and Burkholderia pyrrocinia, two additional Burkholderia cepacia complex bacteria, may confound results of new molecular diagnostic tools. FEMS Immunol Med Microbiol 33, 143–149.[CrossRef]
    [Google Scholar]
  30. Vanlaere, E., LiPuma, J. J., Baldwin, A., Henry, D., De Brandt, E., Mahenthiralingam, E., Speert, D. P., Dowson, C. & Vandamme, P. ( 2008; ). Burkholderia latens sp. nov., Burkholderia diffusa sp. nov., Burkholderia arboris sp. nov., Burkholderia seminalis sp. nov. and Burkholderia metallica sp. nov., novel species within the Burkholderia cepacia complex. Int J Syst Evol Microbiol 58, 1580–1590.[CrossRef]
    [Google Scholar]
  31. Vanlaere, E., Baldwin, A., Gevers, D., Henry, D., De Brandt, E., LiPuma, J. J., Mahenthiralingam, E., Speert, D. P., Dowson, C. & Vandamme, P. ( 2009; ). Taxon K, a complex within the Burkholderia cepacia complex, comprises at least two novel species, Burkholderia contaminans sp. nov. and Burkholderia lata sp. nov. Int J Syst Evol Microbiol 59, 102–111.[CrossRef]
    [Google Scholar]
  32. Willmott, C. J. & Maxwell, A. ( 1993; ). A single point mutation in the DNA gyrase A protein greatly reduces binding of fluoroquinolones to the gyrase-DNA complex. Antimicrob Agents Chemother 37, 126–127.[CrossRef]
    [Google Scholar]
  33. Youmans, G. P. & Youmans, A. S. ( 1949; ). A method for the determination of the rate of growth of tubercle bacilli by the use of small inocula. J Bacteriol 58, 247–225.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.017830-0
Loading
/content/journal/jmm/10.1099/jmm.0.017830-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error