1887

Abstract

, the aetiological agent of pneumonia and non-gonococcal urethritis, shares a high degree of DNA sequence identity with the viridans group of streptococci, particularly and . Although their clinical and pathological manifestations are different, discrimination between and its close viridans cocci relatives is still quite difficult. Suppression subtractive hybridization was performed to identify the genomic differences between and . Thirty-four resulting -specific clones were examined by sequence determination and comparative DNA sequence analysis using . -specific primers were subsequently designed from one of the clonal DNA sequences containing the gene (coding for capsular polysaccharide biosynthesis). The primer specificities were evaluated using 49 viridans streptococci including 26 , 54 other streptococci, 14 species, 14 species and three species, and compared with the specificities of previously described autolysin (), pneumolysin (), Spn9802 and Spn9828 primers. The newly designed -specific primer set was highly specific to and was even better than the existing primers. These findings may help improve the rapid identification and differentiation of from closely related members of the viridans group streptococci.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.017798-0
2010-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/59/10/1146.html?itemId=/content/journal/jmm/10.1099/jmm.0.017798-0&mimeType=html&fmt=ahah

References

  1. Abdeldaim G. M., Stralin K., Olcen P., Blomberg J., Herrmann B. 2008; Toward a quantitative DNA-based definition of pneumococcal pneumonia: a comparison of Streptococcus pneumoniae target genes, with special reference to the Spn9802 fragment. Diagn Microbiol Infect Dis 60:143–150 [CrossRef]
    [Google Scholar]
  2. Adamou J. E., Wizemann T. M., Barren P., Langermann S. 1998; Adherence of Streptococcus pneumoniae to human bronchial epithelial cells (BEAS-2B. Infect Immun 66:820–822
    [Google Scholar]
  3. Agron P. G., Macht M., Radnedge L., Skowronski E. W., Miller W., Andersen G. L. 2002; Use of subtractive hybridization for comprehensive surveys of prokaryotic genome differences. FEMS Microbiol Lett 211:175–182 [CrossRef]
    [Google Scholar]
  4. Akopyants N. S., Fradkov A., Diatchenko L., Hill J. E., Siebert P. D., Lukyanov S. A., Sverdlov E. D., Berg D. E. 1998; PCR-based subtractive hybridization and differences in gene content among strains of Helicobacter pylori . Proc Natl Acad Sci U S A 95:13108–13113 [CrossRef]
    [Google Scholar]
  5. Austrian R. 1981; Some observations on the pneumococcus and on the current status of pneumococcal disease and its prevention. Rev Infect Dis 3:S1–S17 [CrossRef]
    [Google Scholar]
  6. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Struhl K. 1993 Current Protocols in Molecular Biology, Section 2.4.1–2.4.2 New York: John Wiley & Sons;
    [Google Scholar]
  7. Carvalho M. da G. S., Tondella M. L., McCaustland K., Weidlich L., McGee L., Mayer L. W., Steigerwalt A., Whaley M., Facklam R. R. other authors 2007; Evaluation and improvement of real-time PCR assays targeting lytA , ply , and psaA genes for detection of pneumococcal DNA. J Clin Microbiol 45:2460–2466 [CrossRef]
    [Google Scholar]
  8. Corless C. E., Guiver M., Borrow R., Edwards-Jones V., Fox A. J., Kaczmarski E. B. 2001; Simultaneous detection of Neisseria meningitidis , Haemophilus influenzae , and Streptococcus pneumoniae in suspected cases of meningitis and septicemia using real-time PCR. J Clin Microbiol 39:1553–1558 [CrossRef]
    [Google Scholar]
  9. Cundell D. R., Weiser J. N., Shen J., Young A., Tuomanen E. I. 1995; Relationship between colonial morphology and adherence of Streptococcus pneumoniae . Infect Immun 63:757–761
    [Google Scholar]
  10. Dyson C., Barnes R. A., Harrison G. A. 1999; Infective endocarditis: an epidemiological review of 128 episodes. J Infect 38:87–93 [CrossRef]
    [Google Scholar]
  11. Fox G. E., Wisotzkey J. D., Jurtshuk P. Jr 1992; How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42:166–170 [CrossRef]
    [Google Scholar]
  12. García E., López R. 1997; Molecular biology of the capsular genes of Streptococcus pneumoniae . FEMS Microbiol Lett 149:1–10 [CrossRef]
    [Google Scholar]
  13. García E., Llull D., Lopez R. 1999; Functional organization of the gene cluster involved in the synthesis of the pneumococcal capsule. Int Microbiol 2:169–176
    [Google Scholar]
  14. Greiner O., Day P. J., Bosshard P. P., Imeri F., Altwegg M., Nadal D. 2001; Quantitative detection of Streptococcus pneumoniae in nasopharyngeal secretions by real-time PCR. J Clin Microbiol 39:3129–3134 [CrossRef]
    [Google Scholar]
  15. Guidolin A., Morona J. K., Morona R., Hansman D., Paton J. C. 1994; Nucleotide sequence analysis of genes essential for capsular polysaccharide biosynthesis in Streptococcus pneumoniae type 19F. Infect Immun 62:5384–5396
    [Google Scholar]
  16. Hammerschmidt S., Wolff S., Hocke A., Rosseau S., Muller E., Rohde M. 2005; Illustration of pneumococcal polysaccharide capsule during adherence and invasion of epithelial cells. Infect Immun 73:4653–4667 [CrossRef]
    [Google Scholar]
  17. Henrichsen J. 1995; Six newly recognized types of Streptococcus pneumoniae . J Clin Microbiol 33:2759–2762
    [Google Scholar]
  18. Jiang S. M., Wang L., Reeves P. R. 2001; Molecular characterization of Streptococcus pneumoniae type 4, 6B, 8, and 18C capsular polysaccharide gene clusters. Infect Immun 69:1244–1255 [CrossRef]
    [Google Scholar]
  19. Kawamura Y., Whiley R. A., Shu S. E., Ezaki T., Hardie J. M. 1999; Genetic approaches to the identification of the mitis group within the genus Streptococcus . Microbiology 145:2605–2613
    [Google Scholar]
  20. Keith E. R., Podmore R. G., Anderson T. P., Murdoch D. R. 2006; Characteristics of Streptococcus pseudopneumoniae isolated from purulent sputum samples. J Clin Microbiol 44:923–927 [CrossRef]
    [Google Scholar]
  21. Kim W., Kim J.-Y., Cho S.-L., Nam S.-W., Shin J.-W., Kim Y.-S., Shin H.-S. 2008; Glycosyltransferase – a specific marker for the discrimination of Bacillus anthracis from the Bacillus cereus group. J Med Microbiol 57:279–286 [CrossRef]
    [Google Scholar]
  22. McAvin J. C., Reilly P. A., Roudabush R. M., Barnes W. J., Salmen A., Jackson G. W., Beninga K. K., Astorga A., McCleskey F. K. other authors 2001; Sensitive and specific method for rapid identification of Streptococcus pneumoniae using real-time fluorescence PCR. J Clin Microbiol 39:3446–3451 [CrossRef]
    [Google Scholar]
  23. Morona J. K., Morona R., Paton J. C. 1997; Characterization of the locus encoding the Streptococcus pneumoniae type 19F capsular polysaccharide biosynthetic pathway. Mol Microbiol 23:751–763 [CrossRef]
    [Google Scholar]
  24. Morrison K. E., Lake D., Crook J., Carlone G. M., Ades E., Facklam R., Sampson J. S. 2000; Confirmation of psaA in all 90 serotypes of Streptococcus pneumoniae by PCR and potential of this assay for identification and diagnosis. J Clin Microbiol 38:434–437
    [Google Scholar]
  25. Munoz R., Mollerach M., Lopez R., García E. 1997; Molecular organization of the genes required for the synthesis of type 1 capsular polysaccharide of Streptococcus pneumoniae : formation of binary encapsulated pneumococci and identification of cryptic dTDP-rhamnose biosynthesis genes. Mol Microbiol 25:79–92 [CrossRef]
    [Google Scholar]
  26. Nagai K., Shibasaki Y., Hasegawa K., Davies T. A., Jacobs M. R., Ubukata K., Appelbaum P. C. 2001; Evaluation of PCR primers to screen for Streptococcus pneumoniae isolates and β -lactam resistance, and to detect common macrolide resistance determinants. J Antimicrob Chemother 48:915–918 [CrossRef]
    [Google Scholar]
  27. O'Neill A. M., Gillespie S. H., Whiting G. C. 1999; Detection of penicillin susceptibility in Streptococcus pneumoniae by pbp2b PCR-restriction fragment length polymorphism analysis. J Clin Microbiol 37:157–160
    [Google Scholar]
  28. Radnedge L., Agron P. G., Hill K. K., Jackson P. J., Ticknor L. O., Keim P., Andersen G. L. 2003; Genome differences that distinguish Bacillus anthracis from Bacillus cereus and Bacillus thuringiensis . Appl Environ Microbiol 69:2755–2764 [CrossRef]
    [Google Scholar]
  29. Rozen S., Skaletsky H. 2000; Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386
    [Google Scholar]
  30. Salo P., Ortqvist A., Leinonen M. 1995; Diagnosis of bacteremic pneumococcal pneumonia by amplification of pneumolysin gene fragment in serum. J Infect Dis 171:479–482 [CrossRef]
    [Google Scholar]
  31. Saukkoriipi A., Leskela K., Herva E., Leinonen M. 2004; Streptococcus pneumoniae in nasopharyngeal secretions of healthy children: comparison of real-time PCR and culture from STGG-transport medium. Mol Cell Probes 18:147–153 [CrossRef]
    [Google Scholar]
  32. Seki M., Yamashita Y., Torigoe H., Tsuda H., Sato S., Maeno M. 2005; Loop-mediated isothermal amplification method targeting the lytA gene for detection of Streptococcus pneumoniae . J Clin Microbiol 43:1581–1586 [CrossRef]
    [Google Scholar]
  33. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  34. Stackebrandt E., Witt D., Kemmerling C., Kroppenstedt R., Liesack W. 1991; Designation of streptomycete 16S and 23S rRNA-based target regions for oligonucleotide probes. Appl Environ Microbiol 57:1468–1477
    [Google Scholar]
  35. Suzuki N., Seki M., Nakano Y., Kiyoura Y., Maeno M., Yamashita Y. 2005; Discrimination of Streptococcus pneumoniae from viridans group streptococci by genomic subtractive hybridization. J Clin Microbiol 43:4528–4534 [CrossRef]
    [Google Scholar]
  36. Suzuki N., Yuyama M., Maeda S., Ogawa H., Mashiko K., Kiyoura Y. 2006; Genotypic identification of presumptive Streptococcus pneumoniae by PCR using four genes highly specific for S. pneumoniae . J Med Microbiol 55:709–714 [CrossRef]
    [Google Scholar]
  37. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  38. Verhelst R., Kaijalainen T., De Baere T., Verschraegen G., Claeys G., Van Simaey L., De Ganck C., Vaneechoutte M. 2003; Comparison of five genotypic techniques for identification of optochin-resistant pneumococcus-like isolates. J Clin Microbiol 41:3521–3525 [CrossRef]
    [Google Scholar]
  39. Weiser J. N., Austrian R., Sreenivasan P. K., Masure H. R. 1994; Phase variation in pneumococcal opacity: relationship between colonial morphology and nasopharyngeal colonization. Infect Immun 62:2582–2589
    [Google Scholar]
  40. Whatmore A. M., Efstratiou A., Pickerill A. P., Broughton K., Woodard G., Sturgeon D., George R., Dowson C. G. 2000; Genetic relationships between clinical isolates of Streptococcus pneumoniae , Streptococcus oralis , and Streptococcus mitis : characterization of “atypical” pneumococci and organisms allied to S. mitis harboring S. pneumoniae virulence factor-encoding genes. Infect Immun 68:1374–1382 [CrossRef]
    [Google Scholar]
  41. Willcox M. D., Drucker D. B., Hillier V. F. 1988; In-vitro adherence of oral streptococci in the presence of sucrose and its relationship to cariogenicity in the rat. Arch Oral Biol 33:109–113 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.017798-0
Loading
/content/journal/jmm/10.1099/jmm.0.017798-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error