Is exposure to mercury a driving force for the carriage of antibiotic resistance genes? Free

Abstract

The mercury resistance gene has often been found together with antibiotic resistance genes in human commensal . To study this further, we analysed mercury resistance in collections of strains from various populations with different levels of mercury exposure and various levels of antibiotic resistance. The first population lived in France and had no known mercury exposure. The second lived in French Guyana and included a group of Wayampi Amerindians with a known high exposure to mercury. Carriage rates of mercury resistance were assessed by measuring the MIC and by detecting the gene. Mercury-resistant was found significantly more frequently in the populations that had the highest carriage rates of antibiotic-resistant and in parallel antibiotic resistance was higher in the population living in an environment with a high exposure to mercury, suggesting a possible co-selection. Exposure to mercury might be a specific driving force for the acquisition and maintenance of mobile antibiotic resistance gene carriage in the absence of antibiotic selective pressure.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.017665-0
2010-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/59/7/804.html?itemId=/content/journal/jmm/10.1099/jmm.0.017665-0&mimeType=html&fmt=ahah

References

  1. AFSSET-InVS 2004; Journée scientifique “Mercure Guyane”. http://www.afsset.fr/index.php?pageid=738&parentid=424/
    [Google Scholar]
  2. Aubry-Damon H., Grenet K., Sall-Ndiaye P., Che D., Cordeiro E., Bougnoux M. E., Rigaud E., Le Strat Y., Lemanissier V. other authors 2004; Antimicrobial resistance in commensal flora of pig farmers. Emerg Infect Dis 10:873–879 [CrossRef]
    [Google Scholar]
  3. Barkay T., Olson B. H. 1986; Phenotypic and genotypic adaptation of aerobic heterotrophic sediment bacterial communities to mercury stress. Appl Environ Microbiol 52:403–406
    [Google Scholar]
  4. Barkay T., Miller S. M., Summers A. O. 2003; Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27:355–384 [CrossRef]
    [Google Scholar]
  5. BASAG 2007; Le mercure en Guyane. Bulletin d'Alerte et de Surveillance Antilles Guyane. http://www.invs.sante.fr/publications/basag/Basag2007-7.pdf/
    [Google Scholar]
  6. Edlund C., Bjorkman L., Ekstrand J., Sandborgh-Englund G., Nord C. E. 1996; Resistance of the normal human microflora to mercury and antimicrobials after exposure to mercury from dental amalgam fillings. Clin Infect Dis 22:944–950 [CrossRef]
    [Google Scholar]
  7. Fox B., Walsh C. T. 1982; Mercuric reductase. Purification and characterization of a transposon-encoded flavoprotein containing an oxidation-reduction-active disulfide. J Biol Chem 257:2498–2503
    [Google Scholar]
  8. Grenet K., Guillemot D., Jarlier V., Moreau B., Dubourdieu S., Ruimy R., Armand-Lefevre L., Bau P., Andremont A. 2004; Antibacterial resistance, Wayampis Amerindians, French Guyana. Emerg Infect Dis 10:1150–1153 [CrossRef]
    [Google Scholar]
  9. Lee I. W., Livrelli V., Park S. J., Totis P. A., Summers A. O. 1993; In vivo DNA-protein interactions at the divergent mercury resistance ( mer ) promoters. II. Repressor/activator (MerR)-RNA polymerase interaction with merOP mutants. J Biol Chem 268:2632–2639
    [Google Scholar]
  10. Liebert C. A., Wireman J., Smith T., Summers A. O. 1997; Phylogeny of mercury resistance ( mer ) operons of gram-negative bacteria isolated from the fecal flora of primates. Appl Environ Microbiol 63:1066–1076
    [Google Scholar]
  11. Liebert C. A., Hall R. M., Summers A. O. 1999; Transposon Tn 21 , flagship of the floating genome. Microbiol Mol Biol Rev 63:507–522
    [Google Scholar]
  12. Lowy F. D. 2003; Antimicrobial resistance: the example of Staphylococcus aureus . J Clin Invest 111:1265–1273 [CrossRef]
    [Google Scholar]
  13. Magos L., Clarkson T. W. 2006; Overview of the clinical toxicity of mercury. Ann Clin Biochem 43:257–268 [CrossRef]
    [Google Scholar]
  14. Massidda O., Mingoia M., Fadda D., Whalen M. B., Montanari M. P., Varaldo P. E. 2006; Analysis of the β -lactamase plasmid of borderline methicillin-susceptible Staphylococcus aureus : focus on bla complex genes and cadmium resistance determinants cadD and c adX . Plasmid 55:114–127 [CrossRef]
    [Google Scholar]
  15. Miquel G. 2001; Effets des métaux lourds sur l'environnement et la santé. Office parlementaire d'évaluation des choix scientifiques et technologiques. Rapport 261: http://www.senat.fr/rap/l00-261/l00-261_mono.html
    [Google Scholar]
  16. Pallecchi L., Lucchetti C., Bartoloni A., Bartalesi F., Mantella A., Gamboa H., Carattoli A., Paradisi F., Rossolini G. M. 2007; Population structure and resistance genes in antibiotic-resistant bacteria from a remote community with minimal antibiotic exposure. Antimicrob Agents Chemother 51:1179–1184 [CrossRef]
    [Google Scholar]
  17. Pike R., Lucas V., Stapleton P., Gilthorpe M. S., Roberts G., Rowbury R., Richards H., Mullany P., Wilson M. 2002; Prevalence and antibiotic resistance profile of mercury-resistant oral bacteria from children with and without mercury amalgam fillings. J Antimicrob Chemother 49:777–783 [CrossRef]
    [Google Scholar]
  18. Pike R., Lucas V., Petrie A., Roberts G., Stapleton P., Rowbury R., Richards H., Mullany P., Wilson M. 2003; Effect of restoration of children's teeth with mercury amalgam on the prevalence of mercury- and antibiotic-resistant oral bacteria. Microb Drug Resist 9:93–97 [CrossRef]
    [Google Scholar]
  19. Rasmussen L. D., Sorensen S. J. 1998; The effect of longterm exposure to mercury on the bacterial community in marine sediment. Curr Microbiol 36:291–297 [CrossRef]
    [Google Scholar]
  20. Ready D., Qureshi F., Bedi R., Mullany P., Wilson M. 2003; Oral bacteria resistant to mercury and to antibiotics are present in children with no previous exposure to amalgam restorative materials. FEMS Microbiol Lett 223:107–111 [CrossRef]
    [Google Scholar]
  21. Ready D., Pratten J., Mordan N., Watts E., Wilson M. 2007; The effect of amalgam exposure on mercury- and antibiotic-resistant bacteria. Int J Antimicrob Agents 30:34–39 [CrossRef]
    [Google Scholar]
  22. Skurnik D., Le Menac'h A., Zurakowski D., Mazel D., Courvalin P., Denamur E., Andremont A., Ruimy R. 2005; Integron-associated antibiotic resistance and phylogenetic grouping of Escherichia coli isolates from healthy subjects free of recent antibiotic exposure. Antimicrob Agents Chemother 49:3062–3065 [CrossRef]
    [Google Scholar]
  23. Skurnik D., Bonnet D., Bernède-Bauduin C., Michel R., Guette C., Becker J. M., Balaire C., Chau F., Mohler J. other authors 2008; Characteristics of human intestinal Escherichia coli with changing environments. Environ Microbiol 10:2132–2137 [CrossRef]
    [Google Scholar]
  24. Summers A. O., Wireman J., Vimy M. J., Lorscheider F. L., Marshall B., Levy S. B., Bennett S., Billard L. N. 1993; Mercury released from dental “silver” fillings provokes an increase in mercury- and antibiotic-resistant bacteria in oral and intestinal floras of primates. Antimicrob Agents Chemother 37:825–834 [CrossRef]
    [Google Scholar]
  25. Vetriani C., Chew Y. S., Miller S. M., Yagi J., Coombs J., Lutz R. A., Barkay T. 2005; Mercury adaptation among bacteria from a deep-sea hydrothermal vent. Appl Environ Microbiol 71:220–226 [CrossRef]
    [Google Scholar]
  26. Wireman J., Liebert C. A., Smith T., Summers A. O. 1997; Association of mercury resistance with antibiotic resistance in the gram-negative fecal bacteria of primates. Appl Environ Microbiol 63:4494–4503
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.017665-0
Loading
/content/journal/jmm/10.1099/jmm.0.017665-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed