1887

Abstract

The role of small-colony variants (SCVs) in the pathogenesis of biofilm-associated infections remains unclear. This study investigated the mechanism behind increased biofilm-forming potential of a menadione-auxotrophic SCV compared with the wild-type parental strain, as recently reported by our laboratory. SCVs displayed an autoaggregative phenotype, with a greater amount of polysaccharide intercellular adhesin (PIA), significantly reduced tricarboxylic acid cycle activity and a decreased susceptibility to aminoglycosides and cell-wall inhibitors compared with wild-type. The biofilms formed by the SCV were highly structured, consisting of large microcolonies separated by channels, and contained more biomass as well as significantly more PIA than wild-type biofilms. The surface hydrophobicity of the two phenotypes was similar. Thus, the autoaggregation and increased biofilm-forming capacity of menadione-auxotrophic SCVs in this study was related to the enhanced production of PIA in these variants.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.017046-0
2010-05-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/jmm/59/5/521.html?itemId=/content/journal/jmm/10.1099/jmm.0.017046-0&mimeType=html&fmt=ahah

References

  1. Acar, J. F., Goldstein, F. W. & Lagrange, P. ( 1978; ). Human infections caused by thiamine- or menadione-requiring Staphylococcus aureus. J Clin Microbiol 8, 142–147.
    [Google Scholar]
  2. Al Laham, N., Rohde, H., Sander, G., Fischer, A., Hussain, M., Heilmann, C., Mack, D., Proctor, R., Peters, G. & other authors ( 2007; ). Augmented expression of polysaccharide intercellular adhesin in a defined Staphylococcus epidermidis mutant with the small-colony-variant phenotype. J Bacteriol 189, 4494–4501.[CrossRef]
    [Google Scholar]
  3. Allegrucci, M. & Sauer, K. ( 2007; ). Characterization of colony morphology variants isolated from Streptococcus pneumoniae biofilms. J Bacteriol 189, 2030–2038.[CrossRef]
    [Google Scholar]
  4. Besier, S., Smaczny, C., von Mallinckrodt, C., Krahl, A., Ackermann, H., Brade, V. & Wichelhaus, T. A. ( 2007; ). Prevalence and clinical significance of Staphylococcus aureus small-colony variants in cystic fibrosis lung disease. J Clin Microbiol 45, 168–172.[CrossRef]
    [Google Scholar]
  5. Chuard, C., Vaudaux, P. E., Proctor, R. A. & Lew, D. P. ( 1997; ). Decreased susceptibility to antibiotic killing of a stable small colony variant of Staphylococcus aureus in fluid phase and on fibronectin-coated surfaces. J Antimicrob Chemother 39, 603–608.[CrossRef]
    [Google Scholar]
  6. CLSI ( 2006; ). Performance Standards for Antimicrobial Susceptibility Testing; 16th Informational Supplement. CLSI document M100-S16. Wayne, PA: Clinical and Laboratory Standards Institute.
  7. Costerton, J. W., Stewart, P. S. & Greenberg, E. P. ( 1999; ). Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322.[CrossRef]
    [Google Scholar]
  8. Cramton, S. E., Ulrich, M., Gotz, F. & Doring, G. ( 2001; ). Anaerobic conditions induce expression of polysaccharide intercellular adhesin in Staphylococcus aureus and Staphylococcus epidermidis. Infect Immun 69, 4079–4085.[CrossRef]
    [Google Scholar]
  9. Drenkard, E. & Ausubel, F. M. ( 2002; ). Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 416, 740–743.[CrossRef]
    [Google Scholar]
  10. Fux, C. A., Costerton, J. W., Stewart, P. S. & Stoodley, P. ( 2005; ). Survival strategies of infectious biofilms. Trends Microbiol 13, 34–40.[CrossRef]
    [Google Scholar]
  11. Haussler, S., Ziegler, I., Lottel, A., von Gotz, F., Rohde, M., Wehmhohner, D., Saravanamuthu, S., Tummler, B. & Steinmetz, I. ( 2003; ). Highly adherent small-colony variants of Pseudomonas aeruginosa in cystic fibrosis lung infection. J Med Microbiol 52, 295–301.[CrossRef]
    [Google Scholar]
  12. Heilmann, C., Schweitzer, O., Gerke, C., Vanittanakom, N., Mack, D. & Gotz, F. ( 1996; ). Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol Microbiol 20, 1083–1091.[CrossRef]
    [Google Scholar]
  13. Higashi, J. M. & Sullam, P. M. ( 2006; ). Staphylococcus aureus biofilms. In Biofilms, Infection, and Antimicrobial Therapy, pp. 81–108. Edited by J. L. Pace, M. E. Rupp & R. G. Finch. Boca Raton, FL: Taylor and Francis Group.
  14. Jefferson, K. K. ( 2004; ). What drives bacteria to produce a biofilm? FEMS Microbiol Lett 236, 163–173.[CrossRef]
    [Google Scholar]
  15. Jefferson, K. K. & Cerca, N. ( 2006; ). Bacterial–bacterial cell interactions in biofilms: detection of polysaccharide intercellular adhesins by blotting and confocal microscopy. Methods Mol Biol 341, 119–126.
    [Google Scholar]
  16. Kahl, B. C., Belling, G., Becker, P., Chatterjee, I., Wardecki, K., Hilgert, K., Cheung, A. L., Peters, G. & Herrmann, M. ( 2005; ). Thymidine-dependent Staphylococcus aureus small-colony variants are associated with extensive alterations in regulator and virulence gene expression profiles. Infect Immun 73, 4119–4126.[CrossRef]
    [Google Scholar]
  17. Kennedy, M. C., Emptage, M. H., Dreyer, J. L. & Beinert, H. ( 1983; ). The role of iron in the activation–inactivation of aconitase. J Biol Chem 258, 11098–11105.
    [Google Scholar]
  18. Kirisits, M. J., Prost, L., Starkey, M. & Parsek, M. R. ( 2005; ). Characterization of colony morphology variants isolated from Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 71, 4809–4821.[CrossRef]
    [Google Scholar]
  19. Kohler, C., von Eiff, C., Liebeke, M., McNamara, P. J., Lalk, M., Proctor, R. A., Hecker, M. & Engelmann, S. ( 2008; ). A defect in menadione biosynthesis induces global changes in gene expression in Staphylococcus aureus. J Bacteriol 190, 6351–6364.[CrossRef]
    [Google Scholar]
  20. Moisan, H., Brouillette, E., Jacob, C. L., Langlois-Begin, P., Michaud, S. & Malouin, F. ( 2006; ). Transcription of virulence factors in Staphylococcus aureus small-colony variants isolated from cystic fibrosis patients is influenced by SigB. J Bacteriol 188, 64–76.[CrossRef]
    [Google Scholar]
  21. O'Gara, J. P. ( 2007; ). ica and beyond: biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus. FEMS Microbiol Lett 270, 179–188.[CrossRef]
    [Google Scholar]
  22. Otto, M. ( 2008; ). Staphylococcal biofilms. In Bacterial Biofilms, pp. 207–228. Edited by T. Romeo. Heidelberg: Springer.
  23. Perez, P. F., Minnaard, Y., Disalvo, E. A. & De Antoni, G. L. ( 1998; ). Surface properties of bifidobacterial strains of human origin. Appl Environ Microbiol 64, 21–26.
    [Google Scholar]
  24. Proctor, R. A. & Peters, G. ( 1998; ). Small colony variants in staphylococcal infections: diagnostic and therapeutic implications. Clin Infect Dis 27, 419–422.[CrossRef]
    [Google Scholar]
  25. Proctor, R. A., van Langevelde, P., Kristjansson, M., Maslow, J. N. & Arbeit, R. D. ( 1995; ). Persistent and relapsing infections associated with small-colony variants of Staphylococcus aureus. Clin Infect Dis 20, 95–102.[CrossRef]
    [Google Scholar]
  26. Proctor, R. A., Kahl, B., von Eiff, C., Vaudaux, P. E., Lew, D. P. & Peters, G. ( 1998; ). Staphylococcal small colony variants have novel mechanisms for antibiotic resistance. Clin Infect Dis 27, S68–S74.[CrossRef]
    [Google Scholar]
  27. Proctor, R. A., von Eiff, C., Kahl, B. C., Becker, K., McNamara, P., Herrmann, M. & Peters, G. ( 2006; ). Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat Rev Microbiol 4, 295–305.[CrossRef]
    [Google Scholar]
  28. Singh, R., Ray, P., Das, A. & Sharma, M. ( 2009; ). Role of persisters and small-colony variants in antibiotic resistance of planktonic and biofilm-associated Staphylococcus aureus: an in vitro study. J Med Microbiol 58, 1067–1073.[CrossRef]
    [Google Scholar]
  29. Starkey, M., Hickman, J. H., Ma, L., Zhang, N., De Long, S., Hinz, A., Palacios, S., Manoil, C., Kirisits, M. J. & other authors ( 2009; ). Pseudomonas aeruginosa rugose small-colony variants have adaptations that likely promote persistence in the cystic fibrosis lung. J Bacteriol 191, 3492–3503.[CrossRef]
    [Google Scholar]
  30. Stewart, P. S., Rani, S. A., Gjersing, E., Codd, S. L., Zheng, Z. & Pitts, B. ( 2007; ). Observations of cell cluster hollowing in Staphylococcus epidermidis biofilms. Lett Appl Microbiol 44, 454–457.[CrossRef]
    [Google Scholar]
  31. Vaudaux, P., Francois, P., Bisognano, C., Kelley, W. L., Lew, D. P., Schrenzel, J., Proctor, R. A., McNamara, P. J., Peters, G. & Von Eiff, C. ( 2002; ). Increased expression of clumping factor and fibronectin-binding proteins by hemB mutants of Staphylococcus aureus expressing small colony variant phenotypes. Infect Immun 70, 5428–5437.[CrossRef]
    [Google Scholar]
  32. von Eiff, C., Bettin, D., Proctor, R. A., Rolauffs, B., Lindner, N., Winkelmann, W. & Peters, G. ( 1997; ). Recovery of small colony variants of Staphylococcus aureus following gentamicin bead placement for osteomyelitis. Clin Infect Dis 25, 1250–1251.[CrossRef]
    [Google Scholar]
  33. Vuong, C., Kidder, J. B., Jacobson, E. R., Otto, M., Proctor, R. A. & Somerville, G. A. ( 2005; ). Staphylococcus epidermidis polysaccharide intercellular adhesin production significantly increases during tricarboxylic acid cycle stress. J Bacteriol 187, 2967–2973.[CrossRef]
    [Google Scholar]
  34. Williams, I., Venables, W. A., Lloyd, D., Paul, F. & Critchley, I. ( 1997; ). The effects of adherence to silicone surfaces on antibiotic susceptibility in Staphylococcus aureus. Microbiology 143, 2407–2413.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.017046-0
Loading
/content/journal/jmm/10.1099/jmm.0.017046-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error