1887

Abstract

Acute lung injuries due to acute lung infections remain a major cause of mortality. Thus a combination of an antibiotic and a compound with immunomodulatory and anti-inflammatory activities can help to overcome acute lung infection-induced injuries. Curcumin derived from the rhizome of turmeric has been used for decades and it exhibits anti-inflammatory, anti-carcinogenic, immunomodulatory properties by downregulation of various inflammatory mediators. Keeping these properties in mind, we investigated the anti-inflammatory properties of curcumin in a mouse model of acute inflammation by introducing B5055 into BALB/c mice via the intranasal route. Intranasal instillation of bacteria in this mouse model of acute pneumonia-induced inflammation resulted in a significant increase in neutrophil infiltration in the lungs along with increased production of various inflammatory mediators [i.e. malondialdehyde (MDA), myeloperoxidase (MPO), nitric oxide (NO), tumour necrosis factor (TNF)-] in the lung tissue. The animals that received curcumin alone orally or in combination with augmentin, 15 days prior to bacterial instillation into the lungs via the intranasal route, showed a significant ( <0.05) decrease in neutrophil influx into the lungs and a significant ( <0.05) decrease in the production of MDA, NO, MPO activity and TNF- levels. Augmentin treatment alone did not decrease the MDA, MPO, NO and TNF- levels significantly ( >0.05) as compared to the control group. We therefore conclude that curcumin ameliorates lung inflammation induced by B5055 without significantly ( <0.05) decreasing the bacterial load in the lung tissue whereas augmentin takes care of bacterial proliferation. Hence, curcumin can be used as an adjunct therapy along with antibiotics as an anti-inflammatory or an immunomodulatory agent in the case of acute lung infection.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.016873-0
2010-04-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/jmm/59/4/429.html?itemId=/content/journal/jmm/10.1099/jmm.0.016873-0&mimeType=html&fmt=ahah

References

  1. Aggarwal, B. B. & Sung, B. ( 2008; ).Pharmacological basis for the role of curcumin in chronic diseases: an age-oldspice with modern targets. Trends Pharmacol Sci 30, 85–94.
    [Google Scholar]
  2. Ammon, H. P. T. & Wahl, M. A. ( 1991; ). Pharmacology of Curcuma longa. Planta Med 57, 1–7.[CrossRef]
    [Google Scholar]
  3. Baron, R. M., Carvajal, I. M., Liu, X., Okabe, R. O., Fredenburgh,L. E., Macias, A. A., Chen, Y. H., Ejima, K., Layne, M. D. & Perrella,M. A. ( 2004; ). Reduction of nitric oxide synthase 2expression by distamycin A improves survival from endotoxemia. J Immunol 173, 4147–4153.[CrossRef]
    [Google Scholar]
  4. Bhaumik, S., Jyothi, M. D. & Khar, A. ( 2000; ). Differential modulation of nitric oxide production by curcuminin host macrophages and NK cells. FEBS Lett 483, 78–82.[CrossRef]
    [Google Scholar]
  5. Brouet, I. & Ohshima, H. ( 1995; ).Curcumin, an anti-tumor promoter and anti-inflammatory agent, inhibits inductionof nitric oxide synthase in activated macrophages. Biochem BiophysRes Commun 206, 533–540.
    [Google Scholar]
  6. Cheng, A. L., Hsu, C. H., Lin, J. K., Hsu, M. M., Ho, Y. F.,Shen, T. S., Ko, J. Y., Lin, J. T., Lin, B. R. & other authors ( 2001; ). Phase I clinical trial of curcumin, a chemopreventiveagent, in patients with high-risk or pre-malignant lesions. AnticancerRes 21, 2895–2900.
    [Google Scholar]
  7. Cobb, J. P., Natanson, C., Hoffman, W. D., Lodato, R. F., Banks,S., Koev, C. A., Solomon, M. A., Elin, R. J., Hosseini, J. M. & Danner,R. L. ( 1992; ). N-amino-l-arginine,an inhibitor of nitric oxide synthase, raises vascular resistance but increasesmortality rates in awake canines challenged with endotoxin. J ExpMed 176, 1175–1182.
    [Google Scholar]
  8. Cortes, G., Borrell, N., de Astroza, B., Gomez, C., Sauleda,J. & Alberti, S. ( 2002; ). Molecular analysis ofthe contribution of the capsular polysaccharide and the lipopolysaccharideside chain to the virulence of Klebsiella pneumoniae in a murinemodel of pneumonia. Infect Immun 70, 2583–2590.[CrossRef]
    [Google Scholar]
  9. Doran, K. S., Chang, J. C., Benoit, V. M., Eckmann, L. &Nizet, V. ( 2002; ). Group B streptococcal beta-hemolysin/cytolysinpromotes invasion of human lung epithelial cells and the release of interleukin-8. J Infect Dis 185, 196–203.[CrossRef]
    [Google Scholar]
  10. Greenberger, M. J., Strieter, R. M., Kunkel, S. L., Danforth,J. M., Goodman, R. E. & Standiford, T. J. ( 1995; ). Neutralization of IL-10 increases survival in a murine model of Klebsiella pneumoniae. J Immunol 155, 722–729.
    [Google Scholar]
  11. Held, T. K., Mielke, M. E. A., Chedid, M., Unger, M., Trautman,M., Huhn, D. & Cross, A. S. ( 1998; ). Granulocytecolony-stimulating factor worsens the outcome of the experimental Klebsiellapneumoniae pneumonia through direct interaction with the bacteria. Blood 91, 2525–2533.
    [Google Scholar]
  12. Huang, M. T., Lou, Y. R., Ma, W., Newmark, H. L. & Reuhl,K. R. ( 1994; ). Inhibitory effects of dietary curcuminon forestomach, duodenal and colon carcinogenesis in mice. CancerRes 54, 5841–5847.
    [Google Scholar]
  13. Huang, M. T., Newmark, H. L. & Frenkel, K. ( 1997; ). Inhibitory effects of curcumin on tumorigenesis in mice. J Cell Biochem Suppl 27, 26–34.
    [Google Scholar]
  14. Hunter, P. A., Coleman, H. K., Fisher, J. & Taylor, D. ( 1980; ). In vitro synergistic properties of clavulanate withamoxicillin. J Antimicrob Chemother 6, 455–470.[CrossRef]
    [Google Scholar]
  15. Kaur, G., Tirkey, N., Bharrhan, S., Chanana, V., Rishi, P. &Chopra, K. ( 2006; ). Inhibition of oxidative stressand cytokine activity by curcumin in amelioration of endotoxin-induced experimentalhepatoxicity in rodents. Clin Exp Immunol 145, 313–321.[CrossRef]
    [Google Scholar]
  16. Kawamori, T., Lubet, R., Steele, V. E., Kelloff, G. J., Kaskey,R. B. & Rao, C. V. ( 1999; ). Chemopreventive effectof curcumin, a naturally occurring anti-inflammatory agent, during the promotion/progressionstages of colon cancer. Cancer Res 59, 597–601.
    [Google Scholar]
  17. Kooguchi, K., Hashimoto, S., Kobayashi, A., Kitamura, Y., Kudoh,I., Wiener-Kronish, J. & Sawa, T. ( 1998; ). Roleof alveolar macrophages in initiation and regulation of inflammation in Pseudomonas aeruginosa pneumonia. Infect Immun 66, 3164–3169.
    [Google Scholar]
  18. Kooy, N. W., Royall, J. A., Ye, Y. Z., Kelly, D. R. & Beckman,J. S. ( 1995; ). Evidence for in vivo peroxynitrite productionin human acute lung injury. Am J Respir Crit Care Med 151, 1250–1254.
    [Google Scholar]
  19. Kristof, A. S., Goldberg, P., Laubach, V. & Hussaiu, S.N. ( 1998; ). Role of inducible nitric oxide synthasein endotoxin-induced acute lung injury. Am J Respir Crit Care Med 158, 1883–1889.[CrossRef]
    [Google Scholar]
  20. Kumar, V. & Chhibber, S. ( 2008; ).Anti-inflammatory effect of thalidomide alone or in combination with augmentinin Klebsiella pneumoniae B5055 induced acute lung infection in BALB/cmice. Eur J Pharmacol 592, 146–150.[CrossRef]
    [Google Scholar]
  21. Legnani, D. ( 1997; ). Role of oral antibioticsin treatment of community-acquired lower respiratory tract infections. Diagn Microbiol Infect Dis 27, 41–47.[CrossRef]
    [Google Scholar]
  22. Literat, A., Su, F., Norwicki, M., Durand, M., Ramanathan, R.,Jones, C. A., Minoo, P. & Kwong, K. Y. ( 2001; ).Regulation of pro-inflammatory cytokine expression by curcumin in hyalinemembrane disease (HMD). Life Sci 70, 253–256.[CrossRef]
    [Google Scholar]
  23. Marcho, Z., White, J. E., Higgins, P. J. & Tsan, M. F. ( 1991; ). Tumor necrosis factor enhances endothelial cell susceptibilityto oxygen toxicity: role of glutathione. Am J Respir Cell Mol Biol 5, 556–562.[CrossRef]
    [Google Scholar]
  24. Maus, U., Huwe, J., Ermert, L., Ermert, M., Seeger, W. &Lohmeyer, J. ( 2002; ). Molecular pathways of monocyteemigration into the alveolar air space of intact mice. Am J RespirCrit Care Med 165, 95–98.
    [Google Scholar]
  25. Maus, U. A., Waelsch, K., Kuzeil, W. A., Delbeck, T., Mack,M. & Blackwell, T. S. ( 2003; ). Monocytes are potentfacilitators of alveolar neutrophil emigration during lung inflammation: roleof CCL2–CCR2 axis. J Immunol 170, 3273–3278.[CrossRef]
    [Google Scholar]
  26. Mikamo, H., Johri, A. K., Paoletti, L. C., Madoff, L. C. &Onderdonk, A. B. ( 2004; ). Adherence to, invasion by,and cytokine production in response to serotype VIII group B streptococci. Infect Immun 72, 4716–4722.[CrossRef]
    [Google Scholar]
  27. Minnard, E. A., Shou, J., Naama, H., Cech, A., Gallagher, H. &Daly, J. M. ( 1994; ). Inhibition of nitric oxide synthesisis detrimental during endotoxemia. Arch Surg 129, 142–148.[CrossRef]
    [Google Scholar]
  28. Murdoch, C., Read, R. C., Zhang, Q. & Finn, A. ( 2002; ). Choline binding protein A of Streptococcus pneumoniae elicits chemokine production and expression of intercellular adhesionmolecule 1 (CD54) by human alveolar epithelial cells. J Infect Dis 186, 1253–1260.[CrossRef]
    [Google Scholar]
  29. Nava, E., Palmer, R. M. & Moncada, S. ( 1991; ). Inhibition of nitric oxide synthesis in septic shock: how muchis beneficial? Lancet 338, 1555–1557.[CrossRef]
    [Google Scholar]
  30. Ohene-Abuakwa, Y. & Pignatelli, M. ( 2000; ). Adhesion molecules in cancer biology. Adv Exp Med Biol 465, 115–126.
    [Google Scholar]
  31. Ohkawa, H., Ohishi, N. & Yagi, K. ( 1979; ). Assay of lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95, 351–358.[CrossRef]
    [Google Scholar]
  32. Robson, R. L., McLoughlin, R. M., Witowski, J., Loetschler,P., Wilkinson, T. S., Jones, S. A. & Topley, N. ( 2001; ). Differential regulation of chemokine production in human peritoneal mesothelialcells: IFN-γ controls neutrophil migration across the mesotheliumin vitro and in vivo. J Immunol 167, 1028–1031.[CrossRef]
    [Google Scholar]
  33. Rosseau, S., Hammerl, P., Maus, U., Walmrath, H. D., Schutte,H., Grimminger, F., Seeger, W. & Lohmeyer, J. ( 2000; ). Phenotypic characterization of alveolar monocyte recruitment in acuterespiratory distress syndrome. Am J Physiol Lung Cell Mol Physiol 279, L25–L30.
    [Google Scholar]
  34. Saint, S. & Chenoweth, C. E. ( 2003; ). Biofilms and catheter-associated urinary tract infections. Infect Dis Clin North Am 17, 411–432.[CrossRef]
    [Google Scholar]
  35. Shalaby, M. R., Aggarwal, B. B., Rindeknecht, E., Svedersky,L. P., Finkle, B. S. & Palladino, M. A. ( 1985; ).Activation of human polymorphonuclear neutrophil functions by interferon-gammaand tumor necrosis factors. J Immunol 135, 2069–2073.
    [Google Scholar]
  36. Sharma, R. A., Gescher, A. J. & Steward, W. P. ( 2005; ). Curcumin: the story so far. Eur J Cancer 41, 1955–1968.[CrossRef]
    [Google Scholar]
  37. Sittipunt, C., Steinberg, K. P., Ruzinski, J. T., Myles, C.,Zhu, S., Goodman, R. B., Hudson, L. D., Matalon, S. & Martin, T. R. ( 2001; ). Nitric oxide and nitrotyrosine in the lungs of patientswith acute respiratory distress syndrome. Am J Respir Crit CareMed 163, 503–510.
    [Google Scholar]
  38. Strimpakos, A. S. & Sharma, R. A. ( 2008; ). Curcumin: preventive and therapeutic properties in laboratory studiesand clinical trials. Antioxid Redox Signal 10, 511–545.[CrossRef]
    [Google Scholar]
  39. Struve, C. & Krogfelt, K. A. ( 2004; ). Pathogenic potential of environmental Klebsiella pneumoniaeisolates. Environ Microbiol 6, 584–590.[CrossRef]
    [Google Scholar]
  40. Tasaka, S., Hasegawa, N. & Ishizaka, A. ( 2002; ). Pharmacology of acute lung injury. Pulm PharmacolTher 15, 83–95.
    [Google Scholar]
  41. Tsai, W. C., Strieter, R. M., Zisman, D. A., Wilkowski, J. M.,Bucknell, K. A., Chen, G. & Standiford, T. J. ( 1997; ). Nitric oxide is required for effective innate immunity against Klebsiellapneumoniae. Infect Immun 65, 1870–1875.
    [Google Scholar]
  42. Tsan, M. F., White, J. E., Michelsen, P. B. & Wong, G. H. ( 1995; ). Pulmonary O2 toxicity: role ofendogenous tumor necrosis factor. Exp Lung Res 21, 589–597.[CrossRef]
    [Google Scholar]
  43. Ukil, A., Maity, S., Karmakar, S., Datta, N., Vedasiromoni,J. R. & Das, P. K. ( 2003; ). Curcumin, the majorcomponent of food flavour turmeric, reduces mucosal injury in trinitrobenzenesulphonic acid-induced colitis. Br J Pharmacol 139, 209–218.[CrossRef]
    [Google Scholar]
  44. Wang, L. F., Patel, M., Razavi, H. M., Weicker, S., Joseph,M. G., McCormack, D. G. & Mehta, S. ( 2002; ). Roleof inducible nitric oxide synthase in pulmonary microvascular protein leakin murine sepsis. Am J Respir Crit Care Med 165, 1634–1639.[CrossRef]
    [Google Scholar]
  45. Woo, P. C. Y., Pau, S. K. P. & Yuen, K.-Y. ( 2002; ). Macrolides as immunomodulatory agents. Curr MedChem Anti Inflamm Anti Allergy Agents 1, 131–141.
    [Google Scholar]
  46. Yadav, V., Sharma, S., Harjai, K., Mohan, H. & Chhibber,S. ( 2003; ). Induction and resolution of lobar pneumoniafollowing intranasal instillation with Klebsiella pneumoniae in mice. Indian J Med Res 118, 47–52.
    [Google Scholar]
  47. Yang, J., Hooper, W. C., Phillips, D. J. & Talkington, D.F. ( 2002; ). Regulation of proinflammatory cytokinesin human lung epithelial cells infected with Mycoplasma pneumoniae. Infect Immun 70, 3649–3655.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.016873-0
Loading
/content/journal/jmm/10.1099/jmm.0.016873-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error