Typing of isolates endemic in Japan by sequencing of and its application to direct typing Free

Abstract

A typing system for using sequencing of the surface-layer protein A encoding gene () was evaluated and used to analyse clinical isolates in Japan. A total of 160 stool specimens from symptomatic patients in Japan was examined and 87 isolates were recovered. sequence typing was found to have reliable typability and discriminatory power in comparison with PCR ribotyping, and the typing results were highly reproducible and comparable. sequence typing was used to type in DNA extracted directly from stool specimens. Among the 90 stool specimens in which direct typing results were obtained, 77 specimens were positive for culture, and typing results from isolated strains agreed with those from direct typing in all 77 specimens. The sequence type smz was dominant at all four hospitals examined, and this endemic type was detected by culture and/or direct typing in 61 (62 %) of 99 stool specimens positive for toxic culture and/or direct sequence typing. Comparison of epidemic strains reported throughout the world revealed one isolate identified as sequence type gc8, which was found to correspond to PCR ribotype 027 (BI/NAP1/027), whereas no isolates were found with the gene identical to that of PCR ribotype 078 strain. sequence typing is valuable for comparison of strains epidemic in diverse areas because the typing results are reproducible and can easily be shared. In addition, sequence typing could be applied to direct typing without culture.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.016147-0
2010-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/59/5/556.html?itemId=/content/journal/jmm/10.1099/jmm.0.016147-0&mimeType=html&fmt=ahah

References

  1. Barbut F., Mastrantonio P., Delmee M., Brazier J., Kuijper E., Poxton I. 2007; Prospective study of Clostridium difficile infections in Europe with phenotypic and genotypic characterisation of the isolates. Clin Microbiol Infect 13:1048–1057 [CrossRef]
    [Google Scholar]
  2. Calabi E., Fairweather N. 2002; Patterns of sequence conservation in the S-layer proteins and related sequences in Clostridium difficile . J Bacteriol 184:3886–3897 [CrossRef]
    [Google Scholar]
  3. Delmee M., Laroche Y., Avesani V., Cornelis G. 1986; Comparison of serogrouping and polyacrylamide gel electrophoresis for typing Clostridium difficile . J Clin Microbiol 24:991–994
    [Google Scholar]
  4. Eidhin D. N., Ryan A. W., Doyle R. M., Walsh J. B., Kelleher D. 2006; Sequence and phylogenetic analysis of the gene for surface layer protein, slpA , from 14 PCR ribotypes of Clostridium difficile . J Med Microbiol 55:69–83 [CrossRef]
    [Google Scholar]
  5. Goorhuis A., Van der Kooi T., Vaessen N., Dekker F. W., Van den Berg R., Harmanus C., Van den Hof S., Notermans D. W., Kuijper E. J. 2007; Spread and epidemiology of Clostridium difficile polymerase chain reaction ribotype 027/toxinotype III in The Netherlands. Clin Infect Dis 45:695–703 [CrossRef]
    [Google Scholar]
  6. Goorhuis A., Bakker D., Corver J., Debast S. B., Harmanus C., Notermans D. W., Bergwerff A. A., Dekker F. W., Kuijper E. J. 2008; Emergence of Clostridium difficile infection due to a new hypervirulent strain, polymerase chain reaction ribotype 078. Clin Infect Dis 47:1162–1170 [CrossRef]
    [Google Scholar]
  7. Joost I., Speck K., Herrmann M., von Muller L. 2009; Characterisation of Clostridium difficile isolates by slpA and tcdC gene sequencing. Int J Antimicrob Agents 33:S13–S18
    [Google Scholar]
  8. Karjalainen T., Saumier N., Barc M. C., Delmee M., Collignon A. 2002; Clostridium difficile genotyping based on slpA variable region in S-layer gene sequence: an alternative to serotyping. J Clin Microbiol 40:2452–2458 [CrossRef]
    [Google Scholar]
  9. Kato H., Kato N., Watanabe K., Iwai N., Nakamura H., Yamamoto T., Suzuki K., Kim S. M., Chong Y., Wasito E. B. 1998; Identification of toxin A-negative, toxin B-positive Clostridium difficile by PCR. J Clin Microbiol 36:2178–2182
    [Google Scholar]
  10. Kato H., Kato N., Katow S., Maegawa T., Nakamura S., Lyerly D. M. 1999; Deletions in the repeating sequences of the toxin A gene of toxin A-negative, toxin B-positive Clostridium difficile strains. FEMS Microbiol Lett 175:197–203 [CrossRef]
    [Google Scholar]
  11. Kato H., Kato N., Watanabe K., Yamamoto T., Suzuki K., Ishigo S., Kunihiro S., Nakamura I., Killgore G. E., Nakamura S. 2001; Analysis of Clostridium difficile isolates from nosocomial outbreaks at three hospitals in diverse areas of Japan. J Clin Microbiol 39:1391–1395 [CrossRef]
    [Google Scholar]
  12. Kato H., Yokoyama T., Arakawa Y. 2005a; Typing by sequencing the slpA gene of Clostridium difficile strains causing multiple outbreaks in Japan. J Med Microbiol 54:167–171 [CrossRef]
    [Google Scholar]
  13. Kato H., Yokoyama T., Kato H., Arakawa Y. 2005b; Rapid and simple method for detecting the toxin B gene of Clostridium difficile in stool specimens by loop-mediated isothermal amplification. J Clin Microbiol 43:6108–6112 [CrossRef]
    [Google Scholar]
  14. Kato H., Ito Y., Van den Berg R. J., Kuijper E. J., Arakawa Y. 2007; First isolation of Clostridium difficile 027 in Japan. Euro Surveill 12:E070111–E070113
    [Google Scholar]
  15. Keel K., Brazier J. S., Post K. W., Weese S., Songer J. G. 2007; Prevalence of PCR ribotypes among Clostridium difficile isolates from pigs, calves, and other species. J Clin Microbiol 45:1963–1964 [CrossRef]
    [Google Scholar]
  16. Killgore G., Thompson A., Johnson S., Brazier J., Kuijper E., Pepin J., Frost E. H., Savelkoul P., Nicholson B. other authors 2008; Comparison of seven techniques for typing international epidemic strains of Clostridium difficile : restriction endonuclease analysis, pulsed-field gel electrophoresis, PCR-ribotyping, multilocus sequence typing, multilocus variable-number tandem-repeat analysis, amplified fragment length polymorphism, and surface layer protein A gene sequence typing. J Clin Microbiol 46:431–437 [CrossRef]
    [Google Scholar]
  17. Kim H., Riley T. V., Kim M., Kim C. K., Yong D., Lee K., Chong Y., Park J. W. 2008; Increasing prevalence of toxin A-negative, toxin B-positive isolates of Clostridium difficile in Korea: impact on laboratory diagnosis. J Clin Microbiol 46:1116–1117 [CrossRef]
    [Google Scholar]
  18. Komatsu M., Kato H., Aihara M., Shimakawa K., Iwasaki M., Nagasaka Y., Fukuda S., Matsuo S., Arakawa Y. other authors 2003; High frequency of antibiotic-associated diarrhea due to toxin A-negative, toxin B-positive Clostridium difficile in a hospital in Japan and risk factors for infection. Eur J Clin Microbiol Infect Dis 22:525–529 [CrossRef]
    [Google Scholar]
  19. Kuijper E. J., de Weerdt J., Kato H., Kato N., Van Dam A. P., Van der Vorm E. R., Weel J., Van Rheenen C., Dankert J. 2001; Nosocomial outbreak of Clostridium difficile -associated diarrhoea due to a clindamycin-resistant enterotoxin A-negative strain. Eur J Clin Microbiol Infect Dis 20:528–534 [CrossRef]
    [Google Scholar]
  20. Kuijper E. J., Barbut F., Brazier J. S., Kleinkauf N., Eckmanns T., Lambert M. L., Drudy D., Fitzpatrick F., Wiuff C. other authors 2008; Update of Clostridium difficile infection due to PCR ribotype 027 in Europe, 2008. Euro Surveill 13:433–439Medline
    [Google Scholar]
  21. McDonald L. C., Killgore G. E., Thompson A., Owens R. C. Jr, Kazakova S. V., Sambol S. P., Johnson S., Gerding D. N. 2005; An epidemic, toxin gene-variant strain of Clostridium difficile . N Engl J Med 353:2433–2441 [CrossRef]
    [Google Scholar]
  22. Pituch H., Van Leeuwen W., Maquelin K., Wultanska D., Obuch-Woszczatynski P., Nurzynska G., Kato H., Reijans M., Meisel-Mikolajczyk F. other authors 2007; Toxin profiles and resistances to macrolides and newer fluoroquinolones as epidemicity determinants of clinical isolates of Clostridium difficile from Warsaw. Poland. J Clin Microbiol 45:1607–1610 [CrossRef]
    [Google Scholar]
  23. Rupnik M., Kato N., Grabnar M., Kato H. 2003; New types of toxin A-negative, toxin B-positive strains among Clostridium difficile isolates from Asia. J Clin Microbiol 41:1118–1125 [CrossRef]
    [Google Scholar]
  24. Samore M., Killgore G., Johnson S., Goodman R., Shim J., Venkataraman L., Sambol S., DeGirolami P., Tenover F. other authors 1997; Multicenter typing comparison of sporadic and outbreak Clostridium difficile isolates from geographically diverse hospitals. J Infect Dis 176:1233–1238 [CrossRef]
    [Google Scholar]
  25. Sawabe E., Kato H., Osawa K., Chida T., Tojo N., Arakawa Y., Okamura N. 2007; Molecular analysis of Clostridium difficile at a university teaching hospital in Japan: a shift in the predominant type over a five-year period. Eur J Clin Microbiol Infect Dis 26:695–703 [CrossRef]
    [Google Scholar]
  26. Stubbs S. L., Brazier J. S., O'Neill G. L., Duerden B. I. 1999; PCR targeted to the 16S–23S rRNA gene intergenic spacer region of Clostridium difficile and construction of a library consisting of 116 different PCR ribotypes. J Clin Microbiol 37:461–463
    [Google Scholar]
  27. Stubbs S., Rupnik M., Gibert M., Brazier J., Duerden B., Popoff M. 2000; Production of actin-specific ADP-ribosyltransferase (binary toxin) by strains of Clostridium difficile . FEMS Microbiol Lett 186:307–312 [CrossRef]
    [Google Scholar]
  28. Warny M., Pepin J., Fang A., Killgore G., Thompson A., Brazier J., Frost E., McDonald L. C. 2005; Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet 366:1079–1084 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.016147-0
Loading
/content/journal/jmm/10.1099/jmm.0.016147-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed