1887

Abstract

This study was conducted to detect the genes encoding extended-spectrum -lactamases (ESBLs) and determine the epidemiological relatedness of 69 and 33 isolates collected from a regional hospital in central Taiwan, mostly from inpatients ( 87.0 %; 88.0 %). The phenotypes of these isolates were examined according to the combination disc method recommended by the Clinical and Laboratory Standards Institute. Most of the ESBL-producing and isolates (98.6 % and 97 %, respectively) could be detected using cefotaxime discs with and without clavulanate. Genotyping was performed by PCR with type-specific primers. CTX-M-14 type (53.6 %) was the most prevalent ESBL among isolates while SHV type (57.6 %) was the most dominant among isolates. Six and three isolates did not carry genes encoding ESBLs of types TEM, SHV, CTX-M-3, CTX-M-14, CMY-2 and DHA-1. The co-existence of two or more kinds of ESBL in a single isolate was common, occurring in 40.6 % and 72.7 % of and isolates, respectively. PFGE analysis revealed that ESBL producers isolated in this setting were genetically divergent.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.015818-0
2010-06-01
2021-03-09
Loading full text...

Full text loading...

/deliver/fulltext/jmm/59/6/665.html?itemId=/content/journal/jmm/10.1099/jmm.0.015818-0&mimeType=html&fmt=ahah

References

  1. Ambler R. P. 1980; The structure of beta-lactamases. Philos Trans R Soc Lond B Biol Sci 289:321–331 [CrossRef]
    [Google Scholar]
  2. Apisarnthanarak A., Kiratisin P., Mundy L. M. 2008; Clinical and molecular epidemiology of healthcare-associated infections due to extended-spectrum beta-lactamase (ESBL)-producing strains of Escherichia coli and Klebsiella pneumoniae that harbor multiple ESBL genes. Infect Control Hosp Epidemiol 29:1026–1034 [CrossRef]
    [Google Scholar]
  3. Barnaud G., Arlet G., Verdet C., Gaillot O., Lagrange P. H., Philippon A. 1998; Salmonella enteritidis : AmpC plasmid-mediated inducible beta-lactamase (DHA-1) with an ampR gene from Morganella morganii . Antimicrob Agents Chemother 42:2352–2358
    [Google Scholar]
  4. Bauernfeind A., Chong Y., Schweighart S. 1989; Extended broad spectrum beta-lactamase in Klebsiella pneumoniae including resistance to cephamycins. Infection 17:316–321 [CrossRef]
    [Google Scholar]
  5. Bernard H., Tancrede C., Livrelli V., Morand A., Barthelemy M., Labia R. 1992; A novel plasmid-mediated extended-spectrum beta-lactamase not derived from TEM- or SHV-type enzymes. J Antimicrob Chemother 29:590–592 [CrossRef]
    [Google Scholar]
  6. Bradford P. A. 2001; Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev 14:933–951 [CrossRef]
    [Google Scholar]
  7. Chia J. H., Chu C., Su L. H., Chiu C. H., Kuo A. J., Sun C. F., Wu T. L. 2005; Development of a multiplex PCR and SHV melting-curve mutation detection system for detection of some SHV and CTX-M beta-lactamases of Escherichia coli , Klebsiella pneumoniae , and Enterobacter cloacae in Taiwan. J Clin Microbiol 43:4486–4491 [CrossRef]
    [Google Scholar]
  8. CLSI 2008; Performance Standards for Antimicrobial Susceptibility Testing ; 18th Informational Supplement. M100-D18 Wayne, PA: Clinical and Laboratory Standards Institute;
  9. Eckert C., Gautier V., Arlet G. 2006; DNA sequence analysis of the genetic environment of various blaCTX-M genes. J Antimicrob Chemother 57:14–23
    [Google Scholar]
  10. Goyal A., Prasad K. N., Prasad A., Gupta S., Ghoshal U., Ayyagari A. 2009; Extended spectrum beta-lactamases in Escherichia coli & Klebsiella pneumoniae & associated risk factors. Indian J Med Res 129:695–700
    [Google Scholar]
  11. Hawser S. P., Bouchillon S. K., Hoban D. J., Badal R. E., Hsueh P. R., Paterson D. 2009; Emergence of high levels of extended-spectrum β -lactamase-producing Gram-negative bacilli in Asia/Pacific: data from SMART 2007. Antimicrob Agents Chemother 53:3280–3284 [CrossRef]
    [Google Scholar]
  12. Humeniuk C., Arlet G., Gautier V., Grimont P., Labia R., Philippon A. 2002; Beta-lactamases of Kluyvera ascorbata , probable progenitors of some plasmid-encoded CTX-M types. Antimicrob Agents Chemother 46:3045–3049 [CrossRef]
    [Google Scholar]
  13. Jean S. S., Hsueh P. R., Lee W. S., Chang H. T., Chou M. Y., Chen I. S., Wang J. H., Lin C. F., Shyr J. M. other authors 2009; Nationwide surveillance of antimicrobial resistance among Enterobacteriaceae in intensive care units in Taiwan. Eur J Clin Microbiol Infect Dis 28:215–220 [CrossRef]
    [Google Scholar]
  14. Knothe H., Shah P., Krcmery V., Antal M., Mitsuhashi S. 1983; Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens . Infection 11:315–317 [CrossRef]
    [Google Scholar]
  15. Kuo L. C., Yu C. J., Kuo M. L., Chen W. N., Chang C. K., Lin H. I., Chen C. C., Lu M. C., Lin C. H. other authors 2008; Antimicrobial resistance of bacterial isolates from respiratory care wards in Taiwan: a horizontal surveillance study. Int J Antimicrob Agents 31:420–426 [CrossRef]
    [Google Scholar]
  16. Lee S. G., Jeong S. H., Lee H., Kim C. K., Lee Y., Koh E., Chong Y., Lee K. 2009; Spread of CTX-M-type extended-spectrum beta-lactamases among bloodstream isolates of Escherichia coli and Klebsiella pneumoniae from a Korean hospital. Diagn Microbiol Infect Dis 63:76–80 [CrossRef]
    [Google Scholar]
  17. Liao C. H., Sheng W. H., Wang J. T., Sun H. Y., Wang H. K., Hsueh P. R., Chen Y. C., Chang S. C. 2006; In vitro activities of 16 antimicrobial agents against clinical isolates of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in two regional hospitals in Taiwan. J Microbiol Immunol Infect 39:59–66
    [Google Scholar]
  18. Lim K. T., Yeo C. C., Md Yasin R., Balan G., Thong K. L. 2009; Characterization of multiply-drug resistant and extended-spectrum β -lactamase-producing Klebsiella pneumoniae strains from Malaysian hospitals. J Med Microbiol 58:1463–1469 [CrossRef]
    [Google Scholar]
  19. Liu P. Y., Tung J. C., Ke S. C., Chen S. L. 1998; Molecular epidemiology of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae isolates in a district hospital in Taiwan. J Clin Microbiol 36:2759–2762
    [Google Scholar]
  20. Livermore D. M. 1987; Clinical significance of beta-lactamase induction and stable derepression in gram-negative rods. Eur J Clin Microbiol 6:439–445 [CrossRef]
    [Google Scholar]
  21. Livermore D. M., Canton R., Gniadkowski M., Nordmann P., Rossolini G. M., Arlet G., Ayala J., Coque T. M., Kern-Zdanowicz I. other authors 2007; CTX-M: changing the face of ESBLs in Europe. J Antimicrob Chemother 59:165–174
    [Google Scholar]
  22. Naas T., Nordmann P. 1999; OXA-type beta-lactamases. Curr Pharm Des 5:865–879
    [Google Scholar]
  23. Naas T., Poirel L., Nordmann P. 2008; Minor extended-spectrum beta-lactamases. Clin Microbiol Infect 14:42–52 [CrossRef]
    [Google Scholar]
  24. Paterson D. L., Bonomo R. A. 2005; Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev 18:657–686 [CrossRef]
    [Google Scholar]
  25. Philippon A., Arlet G., Jacoby G. A. 2002; Plasmid-determined AmpC-type beta-lactamases. Antimicrob Agents Chemother 46:1–11 [CrossRef]
    [Google Scholar]
  26. Sabate M., Tarrago R., Navarro F., Miro E., Verges C., Barbe J., Prats G. 2000; Cloning and sequence of the gene encoding a novel cefotaxime-hydrolyzing beta-lactamase (CTX-M-9) from Escherichia coli in Spain. Antimicrob Agents Chemother 44:1970–1973 [CrossRef]
    [Google Scholar]
  27. Song W., Lee H., Lee K., Jeong S. H., Bae I. K., Kim J. S., Kwak H. S. 2009; CTX-M-14 and CTX-M-15 enzymes are the dominant type of extended-spectrum β -lactamase in clinical isolates of Escherichia coli from Korea. J Med Microbiol 58:261–266 [CrossRef]
    [Google Scholar]
  28. Tenover F. C., Arbeit R. D., Goering R. V., Mickelsen P. A., Murray B. E., Persing D. H., Swaminathan B. 1995; Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33:2233–2239
    [Google Scholar]
  29. Wachino J., Kurokawa H., Suzuki S., Yamane K., Shibata N., Kimura K., Ike Y., Arakawa Y. 2006; Horizontal transfer of blaCMY-bearing plasmids among clinical Escherichia coli and Klebsiella pneumoniae isolates and emergence of cefepime-hydrolyzing CMY-19. Antimicrob Agents Chemother 50:534–541 [CrossRef]
    [Google Scholar]
  30. Yan J. J., Hsueh P. R., Lu J. J., Chang F. Y., Shyr J. M., Wan J. H., Liu Y. C., Chuang Y. C., Yang Y. C. other authors 2006; Extended-spectrum beta-lactamases and plasmid-mediated AmpC enzymes among clinical isolates of Escherichia coli and Klebsiella pneumoniae from seven medical centers in Taiwan. Antimicrob Agents Chemother 50:1861–1864 [CrossRef]
    [Google Scholar]
  31. Yu W. L., Chuang Y. C., Jones R. N. 2004a; A pragmatic approach to identify extended-spectrum beta-lactamase-producing Klebsiella pneumoniae in Taiwan: in vitro activity of newer and established antimicrobial agents. Diagn Microbiol Infect Dis 48:277–282 [CrossRef]
    [Google Scholar]
  32. Yu W. L., Winokur P. L., Jones R. N., Sader H. S. 2004b; Surveillance in Taiwan using molecular epidemiology for extended-spectrum beta-lactamase-producing Klebsiella pneumoniae . Infect Control Hosp Epidemiol 25:812–818 [CrossRef]
    [Google Scholar]
  33. Yu W. L., Chuang Y. C., Walther-Rasmussen J. 2006; Extended-spectrum beta-lactamases in Taiwan: epidemiology, detection, treatment and infection control. J Microbiol Immunol Infect 39:264–277
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.015818-0
Loading
/content/journal/jmm/10.1099/jmm.0.015818-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error