1887

Abstract

biofilms are resistant to a range of antifungal agents in current clinical use. The basis of this drug resistance is not clear, but in some cases it could be due to the presence of a small number of drug-tolerant or persister cells. In this study, specific staining methods were used to investigate the existence of persisters and apoptosis in biofilms subjected to different concentrations of amphotericin B. Fluorescein diacetate staining revealed the presence of persisters in biofilms of one of two strains of tested, and in biofilms of and Caspase activity, indicative of apoptosis, was detected with SR-FLICA and (aspartyl)-rhodamine 110 fluorochrome-based staining reagents in all of these biofilms. The general inhibitor of mammalian caspases, Z-VAD-FMK, when used at a low concentration (2.5 μM), increased the viability of drug-treated biofilms up to 11.5-fold ( <0.001 %). Seven specific caspase inhibitors had different effects on biofilm viability, but inhibitors of caspases-1, −9, −5, −3 and −2 all significantly increased cell survival (40-fold, 8-fold, 3.5-fold, 1.9-fold and 1.7-fold, respectively). However, histone deacetylase (HDA) inhibitors enhanced the activity of amphotericin B for biofilms of all three species. Sodium butyrate and sodium valproate, for example, when added concurrently with amphotericin B, completely eliminated biofilm populations of . Overall, our results demonstrate an apoptotic process in amphotericin-treated biofilms of three species. They also indicate that HDA inhibitors can enhance the action of the drug and in some cases even eradicate persister subpopulations, suggesting that histone acetylation might activate apoptosis in these cells.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.015784-0
2010-02-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/jmm/59/2/149.html?itemId=/content/journal/jmm/10.1099/jmm.0.015784-0&mimeType=html&fmt=ahah

References

  1. Al-Dhaheri, R. S. & Douglas, L. J. ( 2008; ). Absence of amphotericin B-tolerant persister cells in biofilms of some Candida species. Antimicrob Agents Chemother 52, 1884–1887.[CrossRef]
    [Google Scholar]
  2. Baillie, G. S. & Douglas, L. J. ( 1999; ). Candida biofilms and their susceptibility to antifungal agents. Methods Enzymol 310, 644–656.
    [Google Scholar]
  3. Bonneau, L., Ge, Y., Drury, G. E. & Gallois, P. ( 2008; ). What happened to plant caspases? J Exp Bot 59, 491–499.[CrossRef]
    [Google Scholar]
  4. Buttner, S., Eisenberg, T., Herker, E., Carmona-Gutierrez, D., Kroemer, G. & Madeo, F. ( 2006; ). Why yeast cells can undergo apoptosis: death in times of peace, love, and war. J Cell Biol 175, 521–525.[CrossRef]
    [Google Scholar]
  5. Cao, Y. Y., Huang, S., Dai, B. D., Zhu, Z. Y., Lu, H., Dong, L. L., Cao, Y. B., Wang, Y., Gao, P. H. & other authors ( 2009; ). Candida albicans cells lacking CaMCA1-encoded metacaspase show resistance to oxidative stress-induced death and change in energy metabolism. Fungal Genet Biol 46, 183–189.[CrossRef]
    [Google Scholar]
  6. Choi, H. W., Shin, J. H., Jung, S. I., Park, K. H., Cho, D., Kee, S. J., Shin, M. G., Suh, S. P. & Ryang, D. W. ( 2007; ). Species-specific differences in the susceptibilities of biofilms formed by Candida bloodstream isolates to echinocandin antifungals. Antimicrob Agents Chemother 51, 1520–1523.[CrossRef]
    [Google Scholar]
  7. Douglas, L. J. ( 2003; ). Candida biofilms and their role in infection. Trends Microbiol 11, 30–36.[CrossRef]
    [Google Scholar]
  8. Hamann, A., Brust, D. & Osiewacz, H. D. ( 2008; ). Apoptosis pathways in fungal growth, development and ageing. Trends Microbiol 16, 276–283.[CrossRef]
    [Google Scholar]
  9. Hawser, S. P. & Douglas, L. J. ( 1994; ). Biofilm formation by Candida species on the surface of catheter materials in vitro. Infect Immun 62, 915–921.
    [Google Scholar]
  10. Hawser, S. P. & Douglas, L. J. ( 1995; ). Resistance of Candida albicans biofilms to antifungal agents in vitro. Antimicrob Agents Chemother 39, 2128–2131.[CrossRef]
    [Google Scholar]
  11. Katragkou, A., Chatzimoschou, A., Simitsopoulou, M., Dalakiouridou, M., Diza-Mataftsi, E., Tsantali, C. & Roilides, E. ( 2008; ). Differential activities of newer antifungal agents against Candida albicans and Candida parapsilosis biofilms. Antimicrob Agents Chemother 52, 357–360.[CrossRef]
    [Google Scholar]
  12. Kawagoe, R., Kawagoe, H. & Sano, K. ( 2002; ). Valproic acid induces apoptosis in human leukemia cells by stimulating both caspase-dependent and -independent apoptotic signaling pathways. Leuk Res 26, 495–502.[CrossRef]
    [Google Scholar]
  13. Keren, I., Kaldalu, N., Spoering, A., Wang, Y. & Lewis, K. ( 2004; ). Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett 230, 13–18.[CrossRef]
    [Google Scholar]
  14. Khot, P. D., Suci, P. A., Miller, R. L., Nelson, R. D. & Tyler, B. J. ( 2006; ). A small subpopulation of blastospores in Candida albicans biofilms exhibit resistance to amphotericin B associated with differential regulation of ergosterol and β-1,6-glucan pathway genes. Antimicrob Agents Chemother 50, 3708–3716.[CrossRef]
    [Google Scholar]
  15. Klar, A. J., Srikantha, T. & Soll, D. R. ( 2001; ). A histone deacetylation inhibitor and mutant promote colony-type switching of the human pathogen Candida albicans. Genetics 158, 919–924.
    [Google Scholar]
  16. Kojic, E. M. & Darouiche, R. O. ( 2004; ). Candida infections of medical devices. Clin Microbiol Rev 17, 255–267.[CrossRef]
    [Google Scholar]
  17. LaFleur, M. D., Kumamoto, C. A. & Lewis, K. ( 2006; ). Candida albicans biofilms produce antifungal-tolerant persister cells. Antimicrob Agents Chemother 50, 3839–3846.[CrossRef]
    [Google Scholar]
  18. Lewis, K. ( 2000; ). Programmed cell death in bacteria. Microbiol Mol Biol Rev 64, 503–514.[CrossRef]
    [Google Scholar]
  19. Lewis, K. ( 2001; ). Riddle of biofilm resistance. Antimicrob Agents Chemother 45, 999–1007.[CrossRef]
    [Google Scholar]
  20. Lewis, K. ( 2007; ). Persister cells, dormancy and infectious disease. Nat Rev Microbiol 5, 48–56.[CrossRef]
    [Google Scholar]
  21. Madeo, F., Herker, E., Maldener, C., Wissing, S., Lachelt, S., Herlan, M., Fehr, M., Lauber, K., Sigrist, S. J. & other authors ( 2002; ). A caspase-related protease regulates apoptosis in yeast. Mol Cell 9, 911–917.[CrossRef]
    [Google Scholar]
  22. Mai, A., Rotili, D., Massa, S., Brosch, G., Simonetti, G., Passariello, C. & Palamara, A. T. ( 2007; ). Discovery of uracil-based histone deacetylase inhibitors able to reduce acquired antifungal resistance and trailing growth in Candida albicans. Bioorg Med Chem Lett 17, 1221–1225.[CrossRef]
    [Google Scholar]
  23. Mazzoni, C. & Falcone, C. ( 2008; ). Caspase-dependent apoptosis in yeast. Biochim Biophys Acta 1783, 1320–1327.[CrossRef]
    [Google Scholar]
  24. Medina, V., Edmonds, B., Young, G. P., James, R., Appleton, S. & Zalewski, P. D. ( 1997; ). Induction of caspase-3 protease activity and apoptosis by butyrate and trichostatin A (inhibitors of histone deacetylase): dependence on protein synthesis and synergy with a mitochondrial/cytochrome c-dependent pathway. Cancer Res 57, 3697–3707.
    [Google Scholar]
  25. Mitsui, K., Nakagawa, D., Nakamura, M., Okamoto, T. & Tsurugi, K. ( 2005; ). Valproic acid induces apoptosis dependent of Yca1p at concentrations that mildly affect the proliferation of yeast. FEBS Lett 579, 723–727.[CrossRef]
    [Google Scholar]
  26. Noverr, M. C. & Huffnagle, G. B. ( 2004; ). Regulation of Candida albicans morphogenesis by fatty acid metabolites. Infect Immun 72, 6206–6210.[CrossRef]
    [Google Scholar]
  27. Phillips, A. J., Sudbery, I. & Ramsdale, M. ( 2003; ). Apoptosis induced by environmental stresses and amphotericin B in Candida albicans. Proc Natl Acad Sci U S A 100, 14327–14332.[CrossRef]
    [Google Scholar]
  28. Phillips, A. J., Crowe, J. D. & Ramsdale, M. ( 2006; ). Ras pathway signaling accelerates programmed cell death in the pathogenic fungus Candida albicans. Proc Natl Acad Sci U S A 103, 726–731.[CrossRef]
    [Google Scholar]
  29. Pozarowski, P., Huang, X., Halicka, D. H., Lee, B., Johnson, G. & Darzynkiewicz, Z. ( 2003; ). Interactions of fluorochrome-labeled caspase inhibitors with apoptotic cells: a caution in data interpretation. Cytometry A 55, 50–60.
    [Google Scholar]
  30. Ramage, G., Saville, S. P., Thomas, D. P. & Lopez-Ribot, J. L. ( 2005; ). Candida biofilms: an update. Eukaryot Cell 4, 633–638.[CrossRef]
    [Google Scholar]
  31. Ramsdale, M. ( 2008; ). Programmed cell death in pathogenic fungi. Biochim Biophys Acta 1783, 1369–1380.[CrossRef]
    [Google Scholar]
  32. Shirtliff, M. E., Krom, B. P., Meijering, R. A., Peters, B. M., Zhu, J., Scheper, M. A., Harris, M. L. & Jabra-Rizk, M. A. ( 2009; ). Farnesol-induced apoptosis in Candida albicans. Antimicrob Agents Chemother 53, 2392–2401.[CrossRef]
    [Google Scholar]
  33. Simonetti, G., Passariello, C., Rotili, D., Mai, A., Garaci, E. & Palamara, A. T. ( 2007; ). Histone deacetylase inhibitors may reduce pathogenicity and virulence in Candida albicans. FEMS Yeast Res 7, 1371–1380.[CrossRef]
    [Google Scholar]
  34. Smith, W. L. & Edlind, T. D. ( 2002; ). Histone deacetylase inhibitors enhance Candida albicans sensitivity to azoles and related antifungals: correlation with reduction in CDR and ERG upregulation. Antimicrob Agents Chemother 46, 3532–3539.[CrossRef]
    [Google Scholar]
  35. Srikantha, T., Tsai, L., Daniels, K., Klar, A. J. S. & Soll, D. R. ( 2001; ). The histone deacetylase genes HDA1 and RPD3 play distinct roles in regulation of high-frequency phenotypic switching in Candida albicans. J Bacteriol 183, 4614–4625.[CrossRef]
    [Google Scholar]
  36. Sterner, D. E. & Berger, S. L. ( 2000; ). Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 64, 435–459.[CrossRef]
    [Google Scholar]
  37. Sun, Q., Bi, L., Su, X., Tsurugi, K. & Mitsui, K. ( 2007; ). Valproate induces apoptosis by inducing accumulation of neutral lipids which was prevented by disruption of the SIR2 gene in Saccharomyces cerevisiae. FEBS Lett 581, 3991–3995.[CrossRef]
    [Google Scholar]
  38. Uren, A. G., O'Rourke, K., Aravind, L., Pisabarro, M. T., Seshagiri, S., Koonin, E. V. & Dixit, V. M. ( 2000; ). Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol Cell 6, 961–967.
    [Google Scholar]
  39. Vachova, L. & Palkova, Z. ( 2005; ). Physiological regulation of yeast cell death in multicellular colonies is triggered by ammonia. J Cell Biol 169, 711–717.[CrossRef]
    [Google Scholar]
  40. Vachova, L. & Palkova, Z. ( 2007; ). Caspases in yeast apoptosis-like death: facts and artefacts. FEMS Yeast Res 7, 12–21.[CrossRef]
    [Google Scholar]
  41. Wysocki, R. & Kron, S. J. ( 2004; ). Yeast cell death during DNA damage arrest is independent of caspase or reactive oxygen species. J Cell Biol 166, 311–316.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.015784-0
Loading
/content/journal/jmm/10.1099/jmm.0.015784-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error