1887

Abstract

The visualization and quantification of adherent bacteria is still one of the most relevant topics in microbiology. Besides electron microscopic techniques such as transmission electron microscopy, scanning electron microscopy and environmental scanning electron microscopy, modern fluorescence microscopic approaches based on fluorogenic dyes offer detailed insight into bacterial biofilms. The aim of the present review was to provide an overview of the advantages and disadvantages of different methods for visualization of adherent bacteria with a special focus on the experiences gained in dental research.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.015420-0
2010-01-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jmm/59/1/1.html?itemId=/content/journal/jmm/10.1099/jmm.0.015420-0&mimeType=html&fmt=ahah

References

  1. Aas J. A., Paster B. J., Stokes L. N., Olsen I., Dewhirst F. E. 2005; Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 43:5721–5732 [CrossRef]
    [Google Scholar]
  2. Al-Ahmad A., Wunder A., Auschill T. M., Follo M., Braun G., Hellwig E., Arweiler N. B. 2007; The in vivo dynamics of Streptococcus spp., Actinomyces naeslundii , Fusobacterium nucleatum and Veillonella spp. in dental plaque biofilm as analysed by five-colour multiplex fluorescence in situ hybridization. J Med Microbiol 56:681–687 [CrossRef]
    [Google Scholar]
  3. Al-Ahmad A., Wiedmann-Al-Ahmad M., Auschill T. M., Follo M., Braun G., Hellwig E., Arweiler N. B. 2008a; Effects of commonly used food preservatives on biofilm formation of Streptococcus mutans in vitro. Arch Oral Biol 53:765–772 [CrossRef]
    [Google Scholar]
  4. Al-Ahmad A., Wiedmann-Al-Ahmad M., Carvalho C., Lang M., Follo M., Braun G., Wittmer A., Mulhaupt R., Hellwig E. 2008b; Bacterial and Candida albicans adhesion on rapid prototyping-produced 3D-scaffolds manufactured as bone replacement materials. J Biomed Mater Res A 87:933–943
    [Google Scholar]
  5. Al-Ahmad A., Follo M., Selzer A. C., Hellwig E., Hannig M., Hannig C. 2009a; Bacterial colonization of enamel in situ investigated using fluorescence in situ hybridization. J Med Microbiol 58:1359–1366 [CrossRef]
    [Google Scholar]
  6. Al-Ahmad A., Roth D., Wolkewitz M., Wiedmann-Al-Ahmad M., Follo M., Ratka-Krüger P., Deimling D., Hellwig E., Hannig C. 2009b; Change in diet and oral hygiene over an eight week period: effects on oral health and oral biofilm. Clin Oral Investig in press
    [Google Scholar]
  7. Amann R. I. 1995; In situ identification of microorganisms by whole cell hybridization with rRNA-targeted nucleic acid probes. In Molecular Microbial Ecology Manual 3.3.61–15 Edited by Akkermans A. D. L, van Elsas J. D., de Bruijin F. J. Dordrecht: Kluwer;
    [Google Scholar]
  8. Amann R. I., Binder B. J., Olson R. J., Chisholm S. W., Devereux R., Stahl D. A. 1990; Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925
    [Google Scholar]
  9. Amann R. I., Ludwig W., Schleifer K. H. 1995; Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169
    [Google Scholar]
  10. Beletsky I. P., Umansky S. R. 1990; A new assay for cell death. J Immunol Methods 134:201–205 [CrossRef]
    [Google Scholar]
  11. Bergmans L., Moisiadis P., Van Meerbeek B., Quirynen M., Lambrechts P. 2005; Microscopic observation of bacteria: review highlighting the use of environmental SEM. Int Endod J 38:775–788 [CrossRef]
    [Google Scholar]
  12. Bouchet-Marquis C., Fakan S. 2009; Cryoelectron microscopy of vitreous sections: a step further towards the native state. Methods Mol Biol 464:425–439
    [Google Scholar]
  13. Boulos L., Prevost M., Barbeau B., Coallier J., Desjardins R. 1999; LIVE/DEAD BacLight: application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. J Microbiol Methods 37:77–86 [CrossRef]
    [Google Scholar]
  14. Chavez de Paz L. E. 2009; Image analysis software based on color segmentation for characterization of viability and physiological activity of biofilms. Appl Environ Microbiol 75:1734–1739 [CrossRef]
    [Google Scholar]
  15. Daims H., Lucker S., Wagner M. 2006; daime , a novel image analysis program for microbial ecology and biofilm research. Environ Microbiol 8:200–213 [CrossRef]
    [Google Scholar]
  16. Dangl J. L., Parks D. R., Oi V. T., Herzenberg L. A. 1982; Rapid isolation of cloned isotype switch variants using fluorescence activated cell sorting. Cytometry 2:395–401
    [Google Scholar]
  17. Decker E. M. 2001; The ability of direct fluorescence-based, two-colour assays to detect different physiological states of oral streptococci. Lett Appl Microbiol 33:188–192 [CrossRef]
    [Google Scholar]
  18. Dige I., Nilsson H., Kilian M., Nyvad B. 2007; In situ identification of streptococci and other bacteria in initial dental biofilm by confocal laser scanning microscopy and fluorescence in situ hybridization. Eur J Oral Sci 115:459–467 [CrossRef]
    [Google Scholar]
  19. Donlan R. M., Costerton J. W. 2002; Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193 [CrossRef]
    [Google Scholar]
  20. Dufrene Y. F. 2008; Towards nanomicrobiology using atomic force microscopy. Nat Rev Microbiol 6:674–680 [CrossRef]
    [Google Scholar]
  21. Glazer A. N., Peck K., Mathies R. A. 1990; A stable double-stranded DNA-ethidium homodimer complex: application to picogram fluorescence detection of DNA in agarose gels. Proc Natl Acad Sci U S A 87:3851–3855 [CrossRef]
    [Google Scholar]
  22. Gusberti F. A., Finger M., Lang N. P. 1985; Scanning electron microscope study of 48-hour plaque on different bridge pontics designs. Schweiz Monatsschr Zahnmed 95:539–549
    [Google Scholar]
  23. Hannig M. 1999; Transmission electron microscopy of early plaque formation on dental materials in vivo. Eur J Oral Sci 107:55–64 [CrossRef]
    [Google Scholar]
  24. Hannig M., Balz M. 1999; Influence of in vivo formed salivary pellicle on enamel erosion. Caries Res 33:372–379 [CrossRef]
    [Google Scholar]
  25. Hannig C., Hannig M. 2009; The oral cavity – a key system to understand substratum-dependent bioadhesion on solid surfaces in man. Clin Oral Investig 13:123–139 [CrossRef]
    [Google Scholar]
  26. Hannig C., Huber K., Lambrichts I., Graser J., D'Haen J., Hannig M. 2007a; Detection of salivary alpha-amylase and lysozyme exposed on the pellicle formed in situ on different materials. J Biomed Mater Res A 83:98–103
    [Google Scholar]
  27. Hannig C., Hannig M., Rehmer O., Braun G., Hellwig E., Al-Ahmad A. 2007b; Fluorescence microscopic visualization and quantification of initial bacterial colonization on enamel in situ . Arch Oral Biol 52:1048–1056 [CrossRef]
    [Google Scholar]
  28. Hannig C., Ruggeri A., Al-Khayer B., Schmitz P., Spitzmüller B., Deimling D., Huber K., Hoth-Hannig W., Bowen W. H., Hannig M. 2008; Electron microscopic detection and activity of glucosyltransferase B, C, and D in the in situ formed pellicle. Arch Oral Biol 53:1003–1010 [CrossRef]
    [Google Scholar]
  29. Hannig C., Sorg J., Spitzmüller B., Hannig M., Al-Ahmad A. 2009; Polyphenolic beverages reduce initial bacterial adherence to enamel in situ . J Dent 37:560–566 [CrossRef]
    [Google Scholar]
  30. Heydorn A., Nielsen A. T., Hentzer M., Sternberg C., Givskov M., Ersboll B. K., Molin S. 2000; Quantification of biofilm structures by the novel computer program comstat. Microbiology 146:2395–2407
    [Google Scholar]
  31. Korber D. R., Lawrence J. R., Hendry M. J., Caldwell D. 1992; Programs for determining statistically representative areas of microbial biofilms. Binary 4:204–210
    [Google Scholar]
  32. Korber D. R., Lawrence J. R., Hendry M. J., Caldwell D. E. 1993; Analysis of spatial variability within Mot+ and Mot- Pseudomonas fluorescens biofilms using representative elements. Biofouling 7:339–358 [CrossRef]
    [Google Scholar]
  33. Kristich C. J., Li Y. H., Cvitkovitch D. G., Dunny G. M. 2004; Esp-independent biofilm formation by Enterococcus faecalis . J Bacteriol 186:154–163 [CrossRef]
    [Google Scholar]
  34. Leeder J. S., Dosch H. M., Harper P. A., Lam P., Spielberg S. P. 1989; Fluorescence-based viability assay for studies of reactive drug intermediates. Anal Biochem 177:364–372 [CrossRef]
    [Google Scholar]
  35. Lloyd D., Hayes A. J. 1995; Vigour, vitality and viability of microorganisms. FEMS Microbiol Lett 133:1–7 [CrossRef]
    [Google Scholar]
  36. Lopez-Amoros R., Comas J., Vives-Rego J. 1995; Flow cytometric assessment of Escherichia coli and Salmonella typhimurium starvation-survival in seawater using rhodamine 123, propidium iodide, and oxonol. Appl Environ Microbiol 61:2521–2526
    [Google Scholar]
  37. Marsh P. D. 1993; Antimicrobial strategies in the prevention of dental caries. Caries Res 27 (Suppl. 1):s72–s76 [CrossRef]
    [Google Scholar]
  38. Marsh P. D., Bradshaw D. J. 1995; Dental plaque as a biofilm. J Ind Microbiol 15:169–175 [CrossRef]
    [Google Scholar]
  39. Marsh P., Martin M. 1999 Oral Microbiology Oxford: Wright;
    [Google Scholar]
  40. Mason C. A., Hamer G., Bryers J. D. 1986; The death and lysis of microorganisms in environmental processes. FEMS Microbiol Lett 39:373–401 [CrossRef]
    [Google Scholar]
  41. Møller S., Korber D. R., Wolfaardt G. M., Molin S., Caldwell D. E. 1997; Impact of nutrient composition on a degradative biofilm community. Appl Environ Microbiol 63:2432–2438
    [Google Scholar]
  42. Mueller L. N., de Brouwer J. F., Almeida J. S., Stal L. J., Xavier J. B. 2006; Analysis of a marine phototrophic biofilm by confocal laser scanning microscopy using the new image quantification software phlip. BMC Ecol 6:1 [CrossRef]
    [Google Scholar]
  43. Netuschil L., Reich E., Brecx M. 1989; Direct measurement of the bactericidal effect of chlorhexidine on human dental plaque. J Clin Periodontol 16:484–488 [CrossRef]
    [Google Scholar]
  44. Netuschil L., Weiger R., Preisler R., Brecx M. 1995; Plaque bacteria counts and vitality during chlorhexidine, meridol and listerine mouthrinses. Eur J Oral Sci 103:355–361 [CrossRef]
    [Google Scholar]
  45. Nielsen A. T., Tolker-Nielsen T., Barken K. B., Molin S. 2000; Role of commensal relationships on the spatial structure of a surface-attached microbial consortium. Environ Microbiol 2:59–68 [CrossRef]
    [Google Scholar]
  46. Nyvad B., Kilian M. 1987; Microbiology of the early colonization of human enamel and root surfaces in vivo. Scand J Dent Res 95:369–380
    [Google Scholar]
  47. Paster B. J., Bartoszyk I., Dewhirst F. E. 1998; Identification of oral streptococci using PCR-based, reverse-capture, checkerboard hybridization. Methods Cell Sci 20:223–231 [CrossRef]
    [Google Scholar]
  48. Peeters E., Nelis H. J., Coenye T. 2008; Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. J Microbiol Methods 72:157–165 [CrossRef]
    [Google Scholar]
  49. Roth B. L., Poot M., Yue S. T., Millard P. J. 1997; Bacterial viability and antibiotic susceptibility testing with SYTOX green nucleic acid stain. Appl Environ Microbiol 63:2421–2431
    [Google Scholar]
  50. Sauer K., Thatcher E., Northey R., Gutierrez A. A. 2009; Neutral super-oxidised solutions are effective in killing P. aeruginosa biofilms. Biofouling 25:45–54 [CrossRef]
    [Google Scholar]
  51. Schaber J. A., Hammond A., Carty N. L., Williams S. C., Colmer-Hamood J. A., Burrowes B. H., Dhevan V., Griswold J. A., Hamood A. N. 2007; Diversity of biofilms produced by quorum-sensing-deficient clinical isolates of Pseudomonas aeruginosa . J Med Microbiol 56:738–748 [CrossRef]
    [Google Scholar]
  52. Schwartz T., Hoffmann S., Obst U. 2003; Formation of natural biofilms during chlorine dioxide and u.v. disinfection in a public drinking water distribution system. J Appl Microbiol 95:591–601 [CrossRef]
    [Google Scholar]
  53. Stepanovic S., Vukovic D., Dakic I., Savic B., Svabic-Vlahovic M. 2000; A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods 40:175–179 [CrossRef]
    [Google Scholar]
  54. Thurnheer T., Gmur R., Giertsen E., Guggenheim B. 2001; Automated fluorescent in situ hybridization for the specific detection and quantification of oral streptococci in dental plaque. J Microbiol Methods 44:39–47 [CrossRef]
    [Google Scholar]
  55. Vitkov L., Hermann A., Krautgartner W. D., Herrmann M., Fuchs K., Klappacher M., Hannig M. 2005; Chlorhexidine-induced ultrastructural alterations in oral biofilm. Microsc Res Tech 68:85–89 [CrossRef]
    [Google Scholar]
  56. Weiger R., Decker E. M., Krastl G., Brecx M. 1999; Deposition and retention of vital and dead Streptococcus sanguinis cells on glass surfaces in a flow-chamber system. Arch Oral Biol 44:621–628 [CrossRef]
    [Google Scholar]
  57. Xavier J. B., Schnell A., Wuertz S., Palmer R., White D. C., Almeida J. S. 2001; Objective threshold selection procedure (OTS) for segmentation of scanning laser confocal microscope images. J Microbiol Methods 47:169–180 [CrossRef]
    [Google Scholar]
  58. Yang X., Beyenal H., Harkin G., Lewandowski Z. 2000; Quantifying biofilm structure using image analysis. J Microbiol Methods 39:109–119 [CrossRef]
    [Google Scholar]
  59. Yang X., Beyenal H., Harkin G., Lewandowski Z. 2001; Evaluation of biofilm image thresholding methods. Water Res 35:1149–1158 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.015420-0
Loading
/content/journal/jmm/10.1099/jmm.0.015420-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error