1887

Abstract

A bacterial collection (=249) obtained in Hong Kong from 2002 to 2004 was used to investigate the molecular epidemiology of aminoglycoside resistance among isolates from humans and food-producing animals. Of these, 89 isolates were gentamicin-sensitive (human =60, animal =29) and 160 isolates were gentamicin-resistant (human =107, animal =53). Overall, 84.1 % (90/107) and 75.5 % (40/53) of the gentamicin-resistant isolates from human and animal sources, respectively, were found to possess the gene. The gene for 20 isolates (10 each for human and animal isolates) was sequenced. Two alleles were found that were equally distributed in human and animal isolates. PFGE showed that the gentamicin-resistant isolates exhibited diverse patterns with little clonality. In some isolates, the gene was encoded on large transferable plasmids of multiple incompatibility groups (IncF, IncI1 and IncN). An IncFII plasmid of 140 kb in size was shared by one human and three animal isolates. In summary, this study showed that human and animal isolates share the same pool of resistance genes.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.015032-0
2010-06-01
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/jmm/59/6/702.html?itemId=/content/journal/jmm/10.1099/jmm.0.015032-0&mimeType=html&fmt=ahah

References

  1. Aarestrup,</bold> F. M. ( 2006; ) The origin, evolution, and local and global dissemination of antimicrobial resistance. In Antimicrobial Resistance in Bacteria of Animal Origin, pp. 339–359. Edited by M. F. Aarestrup. Washington, DC: American Society for Microbiology.
  2. Canica, M., Dias, R., Correia, J. D. & Pomba, C. ( 2004; ). Genetic relatedness between human and animal polymorphic bla TEM genes strengthens zoonotic potential among uropathogenic Escherichia coli strains. J Antimicrob Chemother 54, 284–286.[CrossRef]
    [Google Scholar]
  3. Carattoli, A., Bertini, A., Villa, L., Falbo, V., Hopkins, K. L. & Threlfall, E. J. ( 2005; ). Identification of plasmids by PCR-based replicon typing. J Microbiol Methods 63, 219–228.[CrossRef]
    [Google Scholar]
  4. Chaslus-Dancla, E., Pohl, P., Meurisse, M., Marin, M. & Lafont, J. P. ( 1991; ). High genetic homology between plasmids of human and animal origins conferring resistance to the aminoglycosides gentamicin and apramycin. Antimicrob Agents Chemother 35, 590–593.[CrossRef]
    [Google Scholar]
  5. CLSI ( 2007; ). Performance Standards for Antimicrobial Susceptibility Testing, 17th informational supplement. Wayne, PA: Clinical and Laboratory Standards.
  6. Duan, R. S., Sit, T. H., Wong, S. S., Wong, R. C., Chow, K. H., Mak, G. C., Yam, W. C., Ng, L. T., Yuen, K. Y. & Ho, P. L. ( 2006; ). Escherichia coli producing CTX-M β-lactamases in food animals in Hong Kong. Microb Drug Resist 12, 145–148.[CrossRef]
    [Google Scholar]
  7. Ho, P. L., Ho, A. Y., Chow, K. H., Wong, R. C., Duan, R. S., Ho, W. L., Mak, G. C., Tsang, K. W., Yam, W. C. & Yuen, K. Y. ( 2005a; ). Occurrence and molecular analysis of extended-spectrum β-lactamase-producing Proteus mirabilis in Hong Kong, 1999–2002. J Antimicrob Chemother 55, 840–845.[CrossRef]
    [Google Scholar]
  8. Ho, P. L., Shek, R. H., Chow, K. H., Duan, R. S., Mak, G. C., Lai, E. L., Yam, W. C., Tsang, K. W. & Lai, W. M. ( 2005b; ). Detection and characterization of extended-spectrum β-lactamases among bloodstream isolates of Enterobacter spp. in Hong Kong, 2000–2002. J Antimicrob Chemother 55, 326–332.[CrossRef]
    [Google Scholar]
  9. Ho, P. L., Poon, W. W., Loke, S. L., Leung, M. S., Chow, K. H., Wong, R. C., Yip, K. S., Lai, E. L. & Tsang, K. W. ( 2007a; ). Community emergence of CTX-M type extended-spectrum β-lactamases among urinary Escherichia coli from women. J Antimicrob Chemother 60, 140–144.[CrossRef]
    [Google Scholar]
  10. Ho, P. L., Wong, R. C., Yip, K. S., Loke, S. L., Leung, M. S., Mak, G. C., Chow, F. K., Tsang, K. W. & Que, T. L. ( 2007b; ). Antimicrobial resistance in Escherichia coli outpatient urinary isolates from women: emerging multidrug resistance phenotypes. Diagn Microbiol Infect Dis 59, 439–445.[CrossRef]
    [Google Scholar]
  11. Ho, P. L., Wong, R. C., Chow, K. H., Yip, K., Wong, S. Y. & Que, T. L. ( 2008; ). CTX-M type β-lactamases among fecal Escherichia coli and Klebsiella pneumoniae isolates in non-hospitalized children and adults. J Microbiol Immunol Infect 41, 428–432.
    [Google Scholar]
  12. Ho, P. L., Yip, K. S., Chow, K. H., Lo, J. Y., Que, T. L. & Yuen, K. Y. ( 2009; ). Antimicrobial resistance among uropathogens that cause acute uncomplicated cystitis in women in Hong Kong: a prospective multicenter study in 2006 to 2008. Diagn Microbiol Infect Dis 66, 87–93.
    [Google Scholar]
  13. Johnson, T. J. & Nolan, L. K. ( 2009; ). Pathogenomics of the virulence plasmids of Escherichia coli. Microbiol Mol Biol Rev 73, 750–774.[CrossRef]
    [Google Scholar]
  14. Johnson, A. P., Burns, L., Woodford, N., Threlfall, E. J., Naidoo, J., Cooke, E. M. & George, R. C. ( 1994; ). Gentamicin resistance in clinical isolates of Escherichia coli encoded by genes of veterinary origin. J Med Microbiol 40, 221–226.[CrossRef]
    [Google Scholar]
  15. Johnson, A. P., Malde, M., Woodford, N., Cunney, R. J. & Smyth, E. G. ( 1995; ). Urinary isolates of apramycin-resistant Escherichia coli and Klebsiella pneumoniae from Dublin. Epidemiol Infect 114, 105–112.[CrossRef]
    [Google Scholar]
  16. Johnson, J. R., Kuskowski, M. A., Menard, M., Gajewski, A., Xercavins, M. & Garau, J. ( 2006; ). Similarity between human and chicken Escherichia coli isolates in relation to ciprofloxacin resistance status. J Infect Dis 194, 71–78.[CrossRef]
    [Google Scholar]
  17. Karisik, E., Ellington, M. J., Pike, R., Warren, R. E., Livermore, D. M. & Woodford, N. ( 2006; ). Molecular characterization of plasmids encoding CTX-M-15 β-lactamases from Escherichia coli strains in the United Kingdom. J Antimicrob Chemother 58, 665–668.[CrossRef]
    [Google Scholar]
  18. Manges, A. R., Smith, S. P., Lau, B. J., Nuval, C. J., Eisenberg, J. N., Dietrich, P. S. & Riley, L. W. ( 2007; ). Retail meat consumption and the acquisition of antimicrobial resistant Escherichia coli causing urinary tract infections: a case-control study. Foodborne Pathog Dis 4, 419–431.[CrossRef]
    [Google Scholar]
  19. Miller, G. H., Sabatelli, F. J., Hare, R. S., Glupczynski, Y., Mackey, P., Shlaes, D., Shimizu, K., Shaw, K. J. & the Aminoglycoside Resistance Study Groups ( 1997; ). The most frequent aminoglycoside resistance mechanisms – changes with time and geographic area: a reflection of aminoglycoside usage patterns? Clin Infect Dis 24, S46–S62.[CrossRef]
    [Google Scholar]
  20. Musgrove, M. T., Jones, D. R., Northcutt, J. K., Cox, N. A., Harrison, M. A., Fedorka-Cray, P. J. & Ladely, S. R. ( 2006; ). Antimicrobial resistance in Salmonella and Escherichia coli isolated from commercial shell eggs. Poult Sci 85, 1665–1669.[CrossRef]
    [Google Scholar]
  21. Osborn, A. M., Silva Tatley, F. M., Steyn, L. M., Pickup, R. W. & Saunders, J. R. ( 2000; ). Mosaic plasmids and mosaic replicons: evolutionary lessons from the analysis of genetic diversity in IncFII-related replicons. Microbiology 146, 2267–2275.
    [Google Scholar]
  22. Pohl, P., Glupczynski, Y., Marin, M., Van Robaeys, G., Lintermans, P. & Couturier, M. ( 1993; ). Replicon typing characterization of plasmids encoding resistance to gentamicin and apramycin in Escherichia coli and Salmonella typhimurium isolated from human and animal sources in Belgium. Epidemiol Infect 111, 229–238.[CrossRef]
    [Google Scholar]
  23. Ramchandani, M., Manges, A. R., DebRoy, C., Smith, S. P., Johnson, J. R. & Riley, L. W. ( 2005; ). Possible animal origin of human-associated, multidrug-resistant, uropathogenic Escherichia coli. Clin Infect Dis 40, 251–257.[CrossRef]
    [Google Scholar]
  24. Skyberg, J. A., Johnson, T. J., Johnson, J. R., Clabots, C., Logue, C. M. & Nolan, L. K. ( 2006; ). Acquisition of avian pathogenic Escherichia coli plasmids by a commensal E. coli isolate enhances its abilities to kill chicken embryos, grow in human urine, and colonize the murine kidney. Infect Immun 74, 6287–6292.[CrossRef]
    [Google Scholar]
  25. Vakulenko, S. B. & Mobashery, S. ( 2003; ). Versatility of aminoglycosides and prospects for their future. Clin Microbiol Rev 16, 430–450.[CrossRef]
    [Google Scholar]
  26. Vanhoof, R., Content, J., Van Bossuyt, E., Dewit, L. & Hannecart-Pokorni, E. ( 1992; ). Identification of the aadB gene coding for the aminoglycoside-2”-O-nucleotidyltransferase, ANT(2”), by means of the polymerase chain reaction. J Antimicrob Chemother 29, 365–374.[CrossRef]
    [Google Scholar]
  27. Vliegenthart, J. S., Ketelaar-van Gaalen, P. A. G. & van de Klundert, J. A. M. ( 1989; ). Nucleotide sequence of the aacC2 gene, a gentamicin resistance determinant involved in a hospital epidemic of multiply resistant members of the family Enterobacteriaceae. Antimicrob Agents Chemother 33, 1153–1159.[CrossRef]
    [Google Scholar]
  28. Vliegenthart, J. S., Ketelaar-van Gaalen, P. A. G. & van de Klundert, J. A. M. ( 1990; ). Identification of three genes coding for aminoglycoside-modifying enzymes by means of the polymerase chain reaction. J Antimicrob Chemother 25, 759–765.[CrossRef]
    [Google Scholar]
  29. Vliegenthart, J. S., Ketelaar-van Gaalen, P. A. G. & van de Klundert, J. A. M. ( 1991; ). Nucleotide sequence of the aacC3 gene, a gentamicin resistance determinant encoding aminoglycoside-(3)-N-acetyltransferase III expressed in Pseudomonas aeruginosa but not in Escherichia coli. Antimicrob Agents Chemother 35, 892–897.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.015032-0
Loading
/content/journal/jmm/10.1099/jmm.0.015032-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error