1887

Abstract

An increase in the incidence of clinical cases of infection has been reported in recent years, but few studies have examined changes in molecular epidemiology and antibiotic resistance over a long period of time. A collection of 179 isolates of obtained from symptomatic adult patients in southern Scotland between 1979 and 2004 was used to determine changes in the prevalence of epidemiological types and antibiotic susceptibilities to common antibiotics. PCR ribotyping and MIC determination were performed on all isolates. A total of 56 different ribotypes were identified, among which ribotype 002 was the commonest type overall (14 .0%), followed by ribotypes 014 (7.3 %), 012 (5 .0%), 015 (5.0 %), 020 (5 .0%) and 001 (4.5 %). Ribotype 078 was also identified. The 10 commonest ribotypes comprised 55 % of the total isolates. Ribotype 001 increased in prevalence from 1.5 to 12.2 % over the study years, whereas the prevalence of ribotype 012 decreased from 8.7 to 2 .0%. Resistance to clindamycin, erythromycin and ceftriaxone was found in 95.5, 14.0 and 13.4 % of isolates, respectively. Resistance to vancomycin or metronidazole was not detected. Thirty-two (17.9 %) and 14 (7.8 %) isolates were resistant to two and three or more antibiotics, respectively. Ribotype 001 displayed maximum resistance, with 50 % of isolates resistant to erythromycin, moxifloxacin and ceftriaxone, and 100 % resistant to clindamycin. Over the 26 years of the study, antibiotic resistance and ribotype prevalence have changed, and antibiotic pressures may have been the major driver of this change.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.014829-0
2010-03-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/jmm/59/3/338.html?itemId=/content/journal/jmm/10.1099/jmm.0.014829-0&mimeType=html&fmt=ahah

References

  1. Ackermann, G., Tang-Feldman, Y. J., Schaumann, R., Henderson, J. P., Rodloff, A. C., Silva, J. & Cohen, S. H. ( 2003a; ). Antecedent use of fluoroquinolones is associated with resistance to moxifloxacin in Clostridium difficile. Clin Microbiol Infect 9, 526–530.[CrossRef]
    [Google Scholar]
  2. Ackermann, G., Degner, A., Cohen, S. H., Silva, J. & Rodloff, A. C. ( 2003b; ). Prevalence and association of macrolide-lincosamide-streptogramin B (MLSB) resistance with resistance to moxifloxacin in Clostridium difficile. J Antimicrob Chemother 51, 599–603.[CrossRef]
    [Google Scholar]
  3. Barbut, F., Gariazzo, B., Bonné, L., Lalande, V., Burghoffer, B., Luiuz, R. & Petit, J. ( 2007; ). Clinical features of Clostridium difficile-associated infections and molecular characterization of strains: results of a retrospective study, 2000–2004. Infect Control Hosp Epidemiol 28, 131–139.[CrossRef]
    [Google Scholar]
  4. Brazier, J. S., Raybould, R., Patel, B., Duckworth, G., Pearson, A., Charlett, A. Duerden, B. I., & HPA Regional Microbiology Network ( 2008; ). Distribution and antimicrobial susceptibility patterns of Clostridium difficile PCR ribotypes in English hospitals, 2007–08. Euro Surveill 13PPpii=19000 http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=19000.
    [Google Scholar]
  5. Climo, M. W., Israel, D. S., Wong, E. S., Williams, D., Coudron, P. & Markowitz, S. M. ( 1998; ). Hospital-wide restriction of clindamycin: effect on the incidence of Clostridium difficile-associated diarrhoea and cost. Ann Intern Med 128, 989–995.[CrossRef]
    [Google Scholar]
  6. Cookson, B. ( 2007; ). Hypervirulent strains of Clostridium difficile. Postgrad Med J 83, 291–295.[CrossRef]
    [Google Scholar]
  7. Dallal, R. M., Harbrecht, B. G., Boujoukas, A. J., Sirio, C. A., Farkas, L. M., Lee, K. K. & Simmons, R. L. ( 2002; ). Fulminant Clostridium difficile: an underappreciated and increasing cause of death and complications. Ann Surg 235, 363–372.[CrossRef]
    [Google Scholar]
  8. Drudy, D., Calabi, E., Kyne, L., Sougioultzis, S., Kelly, E., Fairweather, N. & Kelly, C. P. ( 2004; ). Human antibody response to surface layer proteins in Clostridium difficile infection. FEMS Immunol Med Microbiol 41, 237–242.[CrossRef]
    [Google Scholar]
  9. Drummond, L. J., McCoubrey, J., Smith, D. G., Starr, J. M. & Poxton, I. R. ( 2003; ). Changes in sensitivity patterns to selected antibiotics in Clostridium difficile in geriatric in-patients over an 18-month period. J Med Microbiol 52, 259–263.[CrossRef]
    [Google Scholar]
  10. Freeman, J., Baines, S. D. & Wilcox, M. H. ( 2005; ). Comparison of the efficacy of ramoplanin and vancomycin in both in vitro and in vivo models of clindamycin-induced Clostridium difficile infection. J Antimicrob Chemother 56, 717–725.[CrossRef]
    [Google Scholar]
  11. Hastings, M. ( 2006; ). Anaerobe Reference Unit Operating Procedure Manual ASOP 39: PCR Ribotyping of Clostridium difficile. NPHS Microbiology Cardiff, issue 1, issue date 13/11/06.
  12. Health Protection Scotland ( 2007; ). Annual Report on the Surveillance of Clostridium difficile Associated Disease (CDAD) in Scotland, October 2006–September 2007. The HPS C. difficile Working Group. http://www.documents.hps.scot.nhs.uk/hai/sshaip/publications/cdad/2007-12-20-ar-cdad.pdf.
  13. Health Protection Scotland ( 2009; ). Annual Report on the Surveillance of Clostridium difficile Associated Disease (CDAD) in Scotland, October 2007–September 2008. HPS Weekly Report 43, no. 2009/02. The HPS C. difficile Working Group. http://www.documents.hps.scot.nhs.uk/ewr/pdf2009/0902.pdf.
  14. Jhung, M. A., Thompson, A. D., Killgore, G. E., Zukowski, W. E., Songer, G., Warny, M., Johnson, S., Gerding, D. N., McDonald, L. C. & Limbago, B. M. ( 2008; ). Toxinotype V Clostridium difficile in humans and food animals. Emerg Infect Dis 14, 1039–1045.[CrossRef]
    [Google Scholar]
  15. Kyne, L., Hamel, M. B., Polavaram, R. & Kelly, C. P. ( 2002; ). Health care costs and mortality associated with nosocomial diarrhoea due to Clostridium difficile. Clin Infect Dis 34, 346–353.[CrossRef]
    [Google Scholar]
  16. Lee, K., Locking, M. E. & Pavec, V. ( 2001; ). Surveillance of Clostridium difficile infection in Scotland 1988–2000. Centre for Infection and Environmental Health (SCIEH). http://www.documents.hps.scot.nhs.uk/posters/2001/surveillance-clostridium-difficile-hai.pdf.
  17. McCoubrey, J. ( 2002; ). The epidemiology of Clostridium difficile in a geriatric unit. PhD thesis, University of Edinburgh, UK.
  18. McCoubrey, J., Starr, J., Martin, H. & Poxton, I. R. ( 2003; ). Clostridium difficile in a geriatric unit: a prospective epidemiological study employing a novel S-layer typing method. J Med Microbiol 52, 573–578.[CrossRef]
    [Google Scholar]
  19. McDonald, L. C., Killgore, G. E., Thompson, A., Owens, R. C., Kazakova, S. V., Sambol, S. P., Johnson, S. & Gerding, D. N. ( 2005; ). An epidemic, toxin gene-variant strain of Clostridium difficile. N Engl J Med 353, 2433–2441.[CrossRef]
    [Google Scholar]
  20. Merrigan, M. M., Gerding, D. N. & Vedantam, G. ( 2006; ). Hypervirulent Clostridium difficile BI strains have altered protein expression and host cell adherence. Poster PI-12. In Eighth Biennial Conference of the Anaerobe Society of America, 25–28 July, Boise, ID, USA.
  21. Mutlu, E., Wroe, A. J., Sanchez-Hurtado, K., Brazier, J. S. & Poxton, I. R. ( 2007; ). Molecular characterization and antimicrobial susceptibility patterns of Clostridium difficile strains isolated from hospitals in south-east Scotland. J Med Microbiol 56, 921–929.[CrossRef]
    [Google Scholar]
  22. NCCLS ( 2004; ). Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria. Approved Standard, 6th edn. NCCLS document M11-A6. Wayne, PA: Clinical and Laboratory Standards Institute.
  23. O’Neill, G. L., Ogunsola, F. T., Brazier, J. S. & Duerden, B. I. ( 1996; ). Modification of a PCR ribotyping method for application as a routine typing scheme for Clostridium difficile. Anaerobe 2, 205–209.[CrossRef]
    [Google Scholar]
  24. Pépin, J., Valiquette, L., Alary, M. E., Villemure, P., Pelletier, A., Forget, K., Pépin, K. & Chouinard, D. ( 2004; ). Clostridium difficile-associated diarrhoea in a region of Quebec from 1991 to 2003: a changing pattern of disease severity. CMAJ 171, 466–472.[CrossRef]
    [Google Scholar]
  25. Rupnik, M., Wilcox, M. H. & Gerding, D. N. ( 2009; ). Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat Rev Microbiol 7, 526–536.[CrossRef]
    [Google Scholar]
  26. Saxton, K., Baines, S. D., Freeman, J., O’Connor, R. & Wilcox, M. H. ( 2009; ). Effects of exposure of Clostridium difficile PCR ribotypes 027 and 001 to fluoroquinolones in a human gut model. Antimicrob Agents Chemother 53, 412–420.[CrossRef]
    [Google Scholar]
  27. Schmidt, C., Löffler, B. & Ackermann, G. ( 2007; ). Antimicrobial phenotypes and molecular basis in clinical strains of Clostridium difficile. Diagn Microbiol Infect Dis 59, 1–5.[CrossRef]
    [Google Scholar]
  28. Schroeder, M. S. ( 2005; ). Clostridium difficile-associated diarrhoea. Am Fam Physician 71, 921–928.
    [Google Scholar]
  29. Settle, C. D. & Wilcox, M. H. ( 1996; ). Review article: antibiotic-induced Clostridium difficile infection. Aliment Pharmacol Ther 10, 835–841.[CrossRef]
    [Google Scholar]
  30. Wiström, J., Norrby, S. R., Myhre, E. B., Eriksson, S., Granström, G., Lagergren, L., Englund, G., Nord, C. E. & Svenungsson, B. J. ( 2001; ). Frequency of antibiotic-associated diarrhoea in 2462 antibiotic-treated hospitalized patients: a prospective study. J Antimicrob Chemother 47, 43–50.
    [Google Scholar]
  31. Wüst, J. & Hardegger, U. ( 1983; ). Transferable resistance to clindamycin, erythromycin, and tetracycline in Clostridium difficile. Antimicrob Agents Chemother 23, 784–786.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.014829-0
Loading
/content/journal/jmm/10.1099/jmm.0.014829-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error