1887

Abstract

Naphthylisoquinoline alkaloids equipped with a ,-hetero-‘biaryl’ axis, and, in particular, simplified synthetic analogues thereof, kill intracellular at concentrations in the low submicromolar range, while being significantly less toxic to their major host cell, the macrophage, at the same concentrations. To further investigate their mechanism of action we evaluated the morphological and ultrastructural changes induced by specific -arylisoquinolines in , and the correlation of these changes with compound accumulation and disposition by the parasite. After 24 h of treatment with the synthetic arylisoquinolinium salts 3 or 4, dramatic structural changes and cell death were observed. Furthermore, the auto-fluorescent derivative salt 3 accumulates continually in intracellular compartments. Our results thus suggest that the leishmanicidal effect of arylisoquinolinium salts may involve their ability to accumulate and precipitate in intracellular organelles, form a huge vacuole and eventually promote cell lysis.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.014241-0
2010-01-01
2019-11-21
Loading full text...

Full text loading...

/deliver/fulltext/jmm/59/1/69.html?itemId=/content/journal/jmm/10.1099/jmm.0.014241-0&mimeType=html&fmt=ahah

References

  1. Bandyopadhyay, P., Ghosh, D. K., De, A., Ghosh, K. N., Chaudhuri, P. P., Das, P. & Bhattacharya, A. ( 1991; ). Metacyclogenesis of Leishmania spp: species-specific in vitro transformation, complement resistance, and cell surface carbohydrate and protein profiles. J Parasitol 77, 411–446.
    [Google Scholar]
  2. Bera, A., Singh, S., Nagaraj, R. & Vaidya, T. ( 2003; ). Induction of autophagic cell death in Leishmania donovani by antimicrobial peptides. Mol Biochem Parasitol 127, 23–35.[CrossRef]
    [Google Scholar]
  3. Berger, B. J., Fairlamb, A. H., Meiering, S. K. & Schmidt, H. ( 1993; ). Cytochrome P450 in trypanosomatids. Biochem Pharmacol 46, 149–157.
    [Google Scholar]
  4. Bringmann, G. & Pokorny, F. ( 1995; ). The naphthylisoquinoline alkaloids. In The Alkaloids, vol. 46, pp. 127–271. Edited by G. A. Cordell. New York: Academic Press.
  5. Bringmann, G., François, G., Aké Assi, L. & Schlauer, J. ( 1998; ). The alkaloids of Triphyophyllum peltatum (Dioncophyllaceae). Chimia (Aarau) 52, 18–28.
    [Google Scholar]
  6. Bringmann, G., Hamm, A., Günther, C., Michel, M., Brun, R. & Mudogo, V. ( 2000; ). Ancistroealaines A and B, two new bioactive naphthylisoquinolines, and related naphthoic acids from Ancistrocladus ealaensis. J Nat Prod 63, 1465–1470.[CrossRef]
    [Google Scholar]
  7. Bringmann, G., Dreyer, M., Faber, J. H., Dalsgaard, P. W., Staerk, D., Jaroszewski, J. W., Ndangalasi, H., Mbago, F., Brun, R. & other authors ( 2003a; ). Ancistrotanzanine A, the first 5,3′-coupled naphthylisoquinoline alkaloid, and two further, 5,8′-linked related compounds from the newly described species Ancistrocladus tanzaniensis. J Nat Prod 66, 1159–1165.[CrossRef]
    [Google Scholar]
  8. Bringmann, G., Hoerr, V., Holzgrabe, U. & Stich, A. ( 2003b; ). Antitrypanosomal naphthylisoquinoline alkaloids and related compounds. Pharmazie 58, 343–346.
    [Google Scholar]
  9. Bringmann, G., Kajahn, I., Pedersen, S. E. H., Faber, J. H., Reichert, M., Gulder, T., Brun, R., Christensen, S. B., Ponte-Sucre, A. & other authors ( 2006; ). Ancistrocladinium A and B, the first N,C-coupled naphthyldihydroisoquinoline alkaloids, from a Congolese Ancistrocladus species. J Org Chem 71, 9348–9356.[CrossRef]
    [Google Scholar]
  10. Chappuis, F., Sundar, S., Hailu, A., Ghalib, H., Rijal, S., Peeling, R. W., Alvar, J. & Boelaert, M. ( 2007; ). Visceral leishmaniasis: what are the needs for diagnosis, treatment and control? Nat Rev Microbiol 5, 873–882.
    [Google Scholar]
  11. Croft, S. L. ( 2008; ). Kinetoplastida: new therapeutic strategies. Parasite 15, 522–527.[CrossRef]
    [Google Scholar]
  12. Croft, S. L., Seifert, K. & Yardley, V. ( 2006; ). Current scenario of drug development for leishmaniasis. Indian J Med Res 123, 399–410.
    [Google Scholar]
  13. Davis, A. J., Murray, H. W. & Handman, E. ( 2004; ). Drugs against leishmaniasis: a synergy of technology and partnerships. Trends Parasitol 20, 73–76.[CrossRef]
    [Google Scholar]
  14. Dodge, M. A., Waller, R. F., Chow, L. M., Zaman, M. M., Cotton, L. M., McConville, M. J. & Wirth, D. F. ( 2004; ). Localization and activity of multidrug resistance protein 1 in the secretory pathway of Leishmania parasites. Mol Microbiol 51, 1563–1575.[CrossRef]
    [Google Scholar]
  15. François, G., Timperman, G., Holenz, J., Aké Assi, L., Geuder, T., Maes, L., Dubois, J., Hanocq, M. & Bringmann, G. ( 1996; ). Naphthylisoquinoline alkaloids exhibit strong growth-inhibiting activities against Plasmodium falciparum and P. berghei in vitro – structure-activity relationships of dioncophylline C. Ann Trop Med Parasitol 90, 115–123.
    [Google Scholar]
  16. François, G., Timperman, G., Steenackers, T., Aké Assi, L., Holenz, J. & Bringmann, G. ( 1997; ). In vitro inhibition of liver forms of the rodent malaria parasite Plasmodium berghei by naphthylisoquinoline alkaloids – structure-activity relationships of dioncophyllines A and C and ancistrocladine. Parasitol Res 83, 673–679.[CrossRef]
    [Google Scholar]
  17. Granthon, A. C., Braga, M. V., Rodrigues, J. C., Cammerer, S., Lorente, S. O., Gilbert, I. H., Urbina, J. A. & de Souza, W. ( 2007; ). Alterations on the growth and ultrastructure of Leishmania chagasi induced by squalene synthase inhibitors. Vet Parasitol 146, 25–34.[CrossRef]
    [Google Scholar]
  18. Krauth-Siegel, R. L., Meiering, S. K. & Schmidt, H. ( 2003; ). The parasite-specific trypanothione metabolism of Trypanosoma and Leishmania. Biol Chem 384, 539–549.
    [Google Scholar]
  19. Lefranc, F., Facchini, V. & Kiss, R. ( 2007; ). Proautophagic drugs: a novel means to combat apoptosis-resistant cancers, with a special emphasis on glioblastomas. Oncologist 12, 1395–1403.[CrossRef]
    [Google Scholar]
  20. Menna-Barreto, R. F., Salomão, K., Dantas, A. P., Santa-Rita, R. M., Soares, M. J., Barbosa, H. S. & de Castro, S. L. ( 2009; ). Different cell death pathways induced by drugs in Trypanosoma cruzi: an ultrastructural study. Micron 40, 157–168.[CrossRef]
    [Google Scholar]
  21. Miranda, K., Docampo, R., Grillo, O., Franzen, A., Attias, M., Vercesi, A., Plattner, H., Hentschel, J. & de Souza, W. ( 2004; ). Dynamics of polymorphism of acidocalcisomes in Leishmania parasites. Histochem Cell Biol 121, 407–418.[CrossRef]
    [Google Scholar]
  22. Misra, P., Khaliq, T., Dixit, A., Sen Gupta, S., Samant, M., Kumari, S., Kumar, A., Kushawaha, P. K., Majumder, H. K. & other authors ( 2008; ). Antileishmanial activity mediated by apoptosis and structure-based target study of peganine hydrochloride dihydrate: an approach for rational drug design. J Antimicrob Chemother 62, 998–1002.[CrossRef]
    [Google Scholar]
  23. Moreno, S. N. & Docampo, R. ( 2003; ). Calcium regulation in protozoan parasites. Curr Opin Microbiol 6, 359–364.[CrossRef]
    [Google Scholar]
  24. Natera, S., Machuca, C., Padrón-Nieves, M., Romero, A., Diaz, E. & Ponte-Sucre, A. ( 2007; ). Proficiency of drug-resistant parasites. Int J Antimicrob Agents 29, 637–642.[CrossRef]
    [Google Scholar]
  25. Ouellette, M., Drummelsmith, J. & Papadopoulou, B. ( 2004; ). Leishmaniasis: drugs in the clinic, resistance and new developments. Drug Resist Updat 7, 257–266.[CrossRef]
    [Google Scholar]
  26. Ponte-Sucre, A. ( 2003; ). Physiological consequences of drug resistance in Leishmania and their relevance for chemotherapy. Kinetoplastid Biol Dis 2, 14 [CrossRef]
    [Google Scholar]
  27. Ponte-Sucre, A., Faber, J. H., Gulder, T., Kajahn, I., Pedersen, S. E. H., Schultheis, M., Bringmann, G. & Moll, H. ( 2007; ). Activity of naphthylisoquinoline alkaloids and synthetic analogs against Leishmania major. Antimicrob Agents Chemother 51, 188–194.[CrossRef]
    [Google Scholar]
  28. Ponte-Sucre, A., Gulder, T., Wegehaupt, A., Albert, C., Rikanović, C., Schaeflein, L., Frank, A., Schultheis, M., Unger, M. & other authors ( 2009; ). Structure-activity relationship and studies on the molecular mechanism of leishmanicidal N,C-coupled arylisoquinolinium salts. J Med Chem 52, 626–636.[CrossRef]
    [Google Scholar]
  29. Ramos, H., Valdivieso, E., Gamargo, M., Dagger, F. & Cohen, B. ( 1996; ). Amphotericin B kills unicellular Leishmania by forming aqueous pores permeable to small cations and anions. J Membr Biol 152, 65–75.[CrossRef]
    [Google Scholar]
  30. Shaha, C. ( 2006; ). Apoptosis in Leishmania species and its relevance to disease pathogenesis. Indian J Med Res 123, 233–244.
    [Google Scholar]
  31. Sieber, M., Dekant, W., Faber, J. H. & Bringmann, G. ( 2006; ). Biotransformation and pharmacokinetics of the antiplasmodial naphthylisoquinoline alkaloid dioncophylline A. Xenobiotica 36, 750–762.[CrossRef]
    [Google Scholar]
  32. Sundar, S. & Chakravarty, J. ( 2008; ). Paromomycin in the treatment of leishmaniasis. Expert Opin Investig Drugs 17, 787–794.[CrossRef]
    [Google Scholar]
  33. Sundar, S. & Chatterjee, M. ( 2006; ). Visceral leishmaniasis – current therapeutic modalities. Indian J Med Res 123, 345–352.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.014241-0
Loading
/content/journal/jmm/10.1099/jmm.0.014241-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error