Antimicrobial and immunomodulatory effect of clarithromycin on macrolide-resistant Free

Abstract

Macrolide antibiotics are frequently administered to treat mycoplasmal pneumonia. However, macrolide-resistant has recently been isolated from clinical specimens in Japan. Clarithromycin (CAM) is a 14-membered-ring macrolide that has host immunomodulatory activity. Here, we established a gnotobiotic mouse model that was monoassociated with macrolide-resistant , and pathologically and microbiologically analysed the effects of antibiotics against mycoplasmal pneumonia. We also examined the immunomodulatory activities of macrolide antibiotics in human lung carcinoma A549 cells and in a specific-pathogen-free (SPF) mouse model of pneumonia induced by antigen . CAM anti-mycoplasma antibiotics decreased the number of macrolide-sensitive and -resistant in the lungs of gnotobiotic mice. Thus, in SPF mice, CAM modulated pulmonary inflammation induced by antigens.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.014191-0
2010-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/59/6/693.html?itemId=/content/journal/jmm/10.1099/jmm.0.014191-0&mimeType=html&fmt=ahah

References

  1. Amsden G. W. 2005; Anti-inflammatory effects of macrolides – an underappreciated benefit in the treatment of community-acquired respiratory tract infections and chronic inflammatory pulmonary conditions?. J Antimicrob Chemother 55:10–21
    [Google Scholar]
  2. Anderson R. 1989; Erythromycin and roxithromycin potentiate human neutrophil locomotion in vitro by inhibition of leukoattractant-activated superoxide generation and autooxidation. J Infect Dis 159:966–973 [CrossRef]
    [Google Scholar]
  3. Butterton J. R., Ryan E. T., Shahin R. A., Calderwood S. B. 1996; Development of a germfree mouse model of Vibrio cholerae infection. Infect Immun 64:4373–4377
    [Google Scholar]
  4. Carlone N. A., Cufini A. M., Tullio V., Sassella D. 1989; Comparative effects of roxithromycin and erythromycin on cellular immune functions in vitro . 2. Chemotaxis and phagocytosis of 3H- Staphylococcus aureus by human macrophages. Microbios 58:17–25
    [Google Scholar]
  5. Chmura K., Lutz R. D., Chiba H., Numata M. S., Choi H. J., Fantuzzi G., Voelker D. R., Chan E. D. 2003; Mycoplasma pneumoniae antigens stimulate interleukin-8. Chest 123:425S [CrossRef]
    [Google Scholar]
  6. Cuffini A. M., Carlone N. A., Tullio V., Borsotto M. 1989; Comparative effects of roxithromycin and erythromycin on cellular immune functions in vitro . 3. Killing of intracellular Staphylococcus aureus by human macrophages. Microbios 58:27–33
    [Google Scholar]
  7. Fernald G. W., Clyde W. A. Jr, Bienenstock J. 1972; Immunoglobulin-containing cells in lungs of hamsters infected with Mycoplasma pneumoniae . J Immunol 108:1400–1408
    [Google Scholar]
  8. Ginestal R. C., Plaza J. F., Callejo J. M., Rodríguez-Espinosa N., Fernández-Ruiz L. C., Masjuán J. 2004; Bilateral optic neuritis and Guillain-Barré syndrome following an acute Mycoplasma pneumoniae infection. J Neurol 251:767–768
    [Google Scholar]
  9. Gladue R. P., Bright G. M., Isaacson R. E., Newborg M. F. 1989; In vitro and in vivo uptake of azithromycin (CP-62,993) by phagocytic cells: possible mechanism of delivery and release at sites of infection. Antimicrob Agents Chemother 33:277–282 [CrossRef]
    [Google Scholar]
  10. Hakkarainen K., Turunen H., Miettinen A., Karppelin M., Kaitila K., Jansson E. 1992; Mycoplasmas and arthritis. Ann Rheum Dis 51:1170–1172 [CrossRef]
    [Google Scholar]
  11. Hayakawa M., Taguchi H., Kamiya S., Fujioka Y., Watanabe H., Kawai S., Kobayashi H. 2002; Animal model of Mycoplasma pneumoniae infection using germfree mice. Clin Diagn Lab Immunol 9:669–676
    [Google Scholar]
  12. Ianaro A., Ialenti A., Maffia P., Sautebin L., Rombolà L., Carnuccio R., Iuvone T., D'Acquisto F., Di Rosa M. 2000; Anti-inflammatory activity of macrolide antibiotics. J Pharmacol Exp Ther 292:156–163
    [Google Scholar]
  13. Johnson J. D., Hand W. L., Francis J. B., King-Thompson N., Corwin R. W. 1980; Antibiotic uptake by alveolar macrophages. J Lab Clin Med 95:429–439
    [Google Scholar]
  14. Kamiya S., Taguchi H., Yamaguchi H., Osaki T., Takahashi M., Nakamura S. 1997; Bacterioprophylaxis using Clostridium butyricum for lethal caecitis by Clostridium difficile in gnotobiotic mice. Rev Med Microbiol 8:S57–S59 [CrossRef]
    [Google Scholar]
  15. Kawasaki S., Takizawa H., Ohtoshi T., Takeuchi N., Kohyama T., Nakamura H., Kasama T., Kobayashi K., Nakahara K. other authors 1998; Roxithromycin inhibits cytokine production by and neutrophil attachment to human bronchial epithelial cells in vitro . Antimicrob Agents Chemother 42:1499–1502
    [Google Scholar]
  16. Kikuchi T., Hagiwara K., Honda Y., Gomi K., Kobayashi T., Takahashi H., Tokue Y., Watanabe A., Nukiwa T. 2002; Clarithromycin suppresses lipopolysaccharide-induced interleukin-8 production by human monocytes through AP-1 and NF-kappa B transcription factors. J Antimicrob Chemother 49:745–755 [CrossRef]
    [Google Scholar]
  17. Kohyama T., Takizawa H., Kawasaki S., Akiyama N., Sato M., Ito K. 1999; Fourteen-member macrolides inhibit interleukin-8 release by human eosinophils from atopic donors. Antimicrob Agents Chemother 43:907–911
    [Google Scholar]
  18. Kudoh S., Uetake T., Hagiwara K., Hirayama M., Hus L. H., Kimura H., Sugiyama Y. 1987; Clinical effects of low-dose long-term erythromycin chemotherapy on diffuse panbronchiolitis. Nihon Kyobu Shikkan Gakkai Zasshi 25:632–642
    [Google Scholar]
  19. Kudoh S., Azuma A., Yamamoto M., Izumi T., Ando M. 1998; Improvement of survival in patients with diffuse panbronchiolitis treated with low-dose erythromycin. Am J Respir Crit Care Med 157:1829–1832 [CrossRef]
    [Google Scholar]
  20. Labro M. T. 1998; Anti-inflammatory activity of macrolides: a new therapeutic potential?. J Antimicrob Chemother 41:37–46 [CrossRef]
    [Google Scholar]
  21. Matsuoka M., Narita M., Okazaki N., Ohya H., Yamazaki T., Ouchi K., Suzuki I., Andoh T., Kenri T. other authors 2004; Characterization and molecular analysis of macrolide-resistant Mycoplasma pneumoniae clinical isolates obtained in Japan. Antimicrob Agents Chemother 48:4624–4630 [CrossRef]
    [Google Scholar]
  22. Mizutani H., Mizutani H., Kitayama T., Hayakawa A., Nagayama E., Kato J., Nakamura K., Tamura E., Izuchi T. 1971; Delayed hypersensitivity in Mycoplasma pneumoniae infections. Lancet 1:186–187
    [Google Scholar]
  23. Nightingale C. H. 1997; Pharmacokinetics and pharmacodynamics of newer macrolides. Pediatr Infect Dis J 16:438–443 [CrossRef]
    [Google Scholar]
  24. Odenholt-Tornqvist I., Löwdin E., Cars O. 1995; Postantibiotic effects and postantibiotic sub-MIC effects of roxithromycin, clarithromycin, and azithromycin on respiratory tract pathogens. Antimicrob Agents Chemother 39:221–226 [CrossRef]
    [Google Scholar]
  25. Okazaki N., Narita M., Yamada S., Izumikawa K., Umetsu M., Kenri T., Sasaki Y., Arakawa Y., Sasaki T. 2001; Characteristics of macrolide-resistant Mycoplasma pneumoniae strains isolated from patients and induced with erythromycin in vitro . Microbiol Immunol 45:617–620 [CrossRef]
    [Google Scholar]
  26. Prokesch R. C., Hand W. L. 1982; Antibiotic entry into human polymorphonuclear leukocytes. Antimicrob Agents Chemother 21:373–380 [CrossRef]
    [Google Scholar]
  27. Sekine H., Tahuchi H., Watanabe H., Kawai S., Fujioka Y., Goto H., Kobayashi H., Kamiya S. 2009; Immunological analysis and pathological examination of gnotobiotic mice monoassociated with Mycoplasma pneumoniae . J Med Microbiol 58:697–705 [CrossRef]
    [Google Scholar]
  28. Sohn M. H., Lee K. E., Choi S. Y., Kwon B. C., Chang M. W., Kim K. E. 2005; Effect of Mycoplasma pneumoniae lysate on interleukin-8 gene expression in human respiratory epithelial cells. Chest 128:322–326
    [Google Scholar]
  29. Stutman H. R. 1987; Stevens-Johnson syndrome and Mycoplasma pneumoniae : evidence for cutaneous infection. J Pediatr 111:845–847 [CrossRef]
    [Google Scholar]
  30. Yamane Y., Kawai C. 1978; A case of myocarditis caused by Mycoplasma pneumoniae . Jpn Circ J 42:1279–1287 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.014191-0
Loading
/content/journal/jmm/10.1099/jmm.0.014191-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed