Effect of bile salts on the DNA and membrane integrity of enteric bacteria Free

Abstract

Enteric bacteria are able to resist the high concentrations of bile encountered throughout the gastrointestinal tract. Here we review the current mechanisms identified in the enteric bacteria , , and to resist the dangerous effects of bile. We describe the role of membrane transport systems, and their connection with DNA repair pathways, in conferring bile resistance to these enterics. We discuss the findings from recent investigations that indicate bile tolerance is dependent upon being able to resist the detergent properties of bile at both the membrane and DNA level.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.014092-0
2009-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/58/12/1533.html?itemId=/content/journal/jmm/10.1099/jmm.0.014092-0&mimeType=html&fmt=ahah

References

  1. Alekshun M. N., Levy S. B. 1997; Regulation of chromosomally mediated multiple antibiotic resistance: the mar regulon. Antimicrob Agents Chemother 41:2067–2075
    [Google Scholar]
  2. Alvarez G., Heredia N., Garcia S. 2003; Relationship between the effects of stress induced by human bile juice and acid treatment in Vibrio cholerae . J Food Prot 66:2283–2288
    [Google Scholar]
  3. Begley M., Gahan C. G., Hill C. 2002; Bile stress response in Listeria monocytogenes LO28: adaptation, cross-protection, and identification of genetic loci involved in bile resistance. Appl Environ Microbiol 68:6005–6012 [CrossRef]
    [Google Scholar]
  4. Begley M., Gahan C. G., Hill C. 2005a; The interaction between bacteria and bile. FEMS Microbiol Rev 29:625–651 [CrossRef]
    [Google Scholar]
  5. Begley M., Sleator R. D., Gahan C. G., Hill C. 2005b; Contribution of three bile-associated loci, bsh , pva , and btlB , to gastrointestinal persistence and bile tolerance of Listeria monocytogenes . Infect Immun 73:894–904 [CrossRef]
    [Google Scholar]
  6. Bernstein C., Bernstein H., Payne C. M., Beard S. E., Schneider J. 1999; Bile salt activation of stress response promoters in Escherichia coli . Curr Microbiol 39:68–72 [CrossRef]
    [Google Scholar]
  7. Breton Y. L., Maze A., Hartke A., Lemarinier S., Auffray Y., Rince A. 2002; Isolation and characterization of bile salts-sensitive mutants of Enterococcus faecalis . Curr Microbiol 45:434–439 [CrossRef]
    [Google Scholar]
  8. Bron P. A., Marco M., Hoffer S. M., Van Mullekom E., De Vos W. M., Kleerebezem M. 2004; Genetic characterization of the bile salt response in Lactobacillus plantarum and analysis of responsive promoters in vitro and in situ in the gastrointestinal tract. J Bacteriol 186:7829–7835 [CrossRef]
    [Google Scholar]
  9. Cano D. A., Pucciarelli M. G., Garcia-del Portillo F., Casadesus J. 2002; Role of the RecBCD recombination pathway in Salmonella virulence. J Bacteriol 184:592–595 [CrossRef]
    [Google Scholar]
  10. Chatterjee A., Chaudhuri S., Saha G., Gupta S., Chowdhury R. 2004; Effect of bile on the cell surface permeability barrier and efflux system of Vibrio cholerae . J Bacteriol 186:6809–6814 [CrossRef]
    [Google Scholar]
  11. Chou J. H., Greenberg J. T., Demple B. 1993; Posttranscriptional repression of Escherichia coli OmpF protein in response to redox stress: positive control of the micF antisense RNA by the soxRS locus. J Bacteriol 175:1026–1031
    [Google Scholar]
  12. Crawford R. W., Gibson D. L., Kay W. W., Gunn J. S. 2008; Identification of a bile-induced exopolysaccharide required for Salmonella biofilm formation on gallstone surfaces. Infect Immun 76:5341–5349 [CrossRef]
    [Google Scholar]
  13. Ding W. K., Shah N. P. 2007; Acid, bile, and heat tolerance of free and microencapsulated probiotic bacteria. J Food Sci 72:M446–M450 [CrossRef]
    [Google Scholar]
  14. Ding J. W., Andersson R., Soltesz V., Willen R., Bengmark S. 1993; The role of bile and bile acids in bacterial translocation in obstructive jaundice in rats. Eur Surg Res 25:11–19
    [Google Scholar]
  15. Dubuisson J. F., Vianney A., Hugouvieux-Cotte-Pattat N., Lazzaroni J. C. 2005; Tol-Pal proteins are critical cell envelope components of Erwinia chrysanthemi affecting cell morphology and virulence. Microbiology 151:3337–3347 [CrossRef]
    [Google Scholar]
  16. Dussurget O., Cabanes D., Dehoux P., Lecuit M., Buchrieser C., Glaser P., Cossart P. 2002; Listeria monocytogenes bile salt hydrolase is a PrfA-regulated virulence factor involved in the intestinal and hepatic phases of listeriosis. Mol Microbiol 45:1095–1106 [CrossRef]
    [Google Scholar]
  17. Foster P. L. 2007; Stress-induced mutagenesis in bacteria. Crit Rev Biochem Mol Biol 42:373–397 [CrossRef]
    [Google Scholar]
  18. Froelich J. M., Tran K., Wall D. 2006; A pmrA constitutive mutant sensitizes Escherichia coli to deoxycholic acid. J Bacteriol 188:1180–1183 [CrossRef]
    [Google Scholar]
  19. Gahan C. G., Hill C. 1999; The relationship between acid stress responses and virulence in Salmonella typhimurium and Listeria monocytogenes . Int J Food Microbiol 50:93–100 [CrossRef]
    [Google Scholar]
  20. Hardy J., Francis K. P., DeBoer M., Chu P., Gibbs K., Contag C. H. 2004; Extracellular replication of Listeria monocytogenes in the murine gall bladder. Science 303:851–853 [CrossRef]
    [Google Scholar]
  21. Hay D. W., Carey M. C. 1990; Chemical species of lipids in bile. Hepatology 12:6S–14S (Discussion 14S–16S)
    [Google Scholar]
  22. Heithoff D. M., Enioutina E. Y., Daynes R. A., Sinsheimer R. L., Low D. A., Mahan M. J. 2001; Salmonella DNA adenine methylase mutants confer cross-protective immunity. Infect Immun 69:6725–6730 [CrossRef]
    [Google Scholar]
  23. Hofmann A. F. 1999; The continuing importance of bile acids in liver and intestinal disease. Arch Intern Med 159:2647–2658 [CrossRef]
    [Google Scholar]
  24. Inagaki T., Moschetta A., Lee Y.-K., Peng L., Zhao G., Downes M., Yu R. T., Shelton J. M., Richardson J. A. other authors 2006; Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc Natl Acad Sci U S A 103:3920–3925 [CrossRef]
    [Google Scholar]
  25. Jones C., Holland I. B. 1985; Role of the SulB (FtsZ) protein in division inhibition during the SOS response in Escherichia coli : FtsZ stabilizes the inhibitor SulA in maxicells. Proc Natl Acad Sci U S A 82:6045–6049 [CrossRef]
    [Google Scholar]
  26. Joo L. M., Macfarlane-Smith L. R., Okeke I. N. 2007; Error-prone DNA repair system in enteroaggregative Escherichia coli identified by subtractive hybridization. J Bacteriol 189:3793–3803 [CrossRef]
    [Google Scholar]
  27. Kandell R. L., Bernstein C. 1991; Bile salt/acid induction of DNA damage in bacterial and mammalian cells: implications for colon cancer. Nutr Cancer 16:227–238 [CrossRef]
    [Google Scholar]
  28. Kenyon C. J., Walker G. C. 1980; DNA-damaging agents stimulate gene expression at specific loci in Escherichia coli . Proc Natl Acad Sci U S A 77:2819–2823 [CrossRef]
    [Google Scholar]
  29. Kheadr E., Dabour N., Le Lay C., Lacroix C., Fliss I. 2007; Antibiotic susceptibility profile of bifidobacteria as affected by oxgall, acid, and hydrogen peroxide stress. Antimicrob Agents Chemother 51:169–174 [CrossRef]
    [Google Scholar]
  30. Kim S. H., Gorski L., Reynolds J., Orozco E., Fielding S., Park Y. H., Borucki M. K. 2006; Role of uvrA in the growth and survival of Listeria monocytogenes under UV radiation and acid and bile stress. J Food Prot 69:3031–3036
    [Google Scholar]
  31. King T., Ferenci T., Szabo E. A. 2003; The effect of growth atmosphere on the ability of Listeria monocytogenes to survive exposure to acid, proteolytic enzymes and bile salts. Int J Food Microbiol 84:133–143 [CrossRef]
    [Google Scholar]
  32. Kristoffersen S. M., Ravnum S., Tourasse N. J., Okstad O. A., Kolsto A. B., Davies W. 2007; Low concentrations of bile salts induce stress responses and reduce motility in Bacillus cereus ATCC 14579. J Bacteriol 189:5302–5313 [CrossRef]
    [Google Scholar]
  33. Lin J., Sahin O., Michel L. O., Zhang Q. 2003; Critical role of multidrug efflux pump CmeABC in bile resistance and in vivo colonization of Campylobacter jejuni . Infect Immun 71:4250–4259 [CrossRef]
    [Google Scholar]
  34. Lundegaard C., Jensen K. F. 1994; The DNA damage-inducible dinD gene of Escherichia coli is equivalent to orfY upstream of pyrE . J Bacteriol 176:3383–3385
    [Google Scholar]
  35. McGowan C. C., Cover T. L., Blaser M. J. 1996; Helicobacter pylori and gastric acid: biological and therapeutic implications. Gastroenterology 110:926–938 [CrossRef]
    [Google Scholar]
  36. Mead P. S., Slutsker L., Dietz V., McCaig L. F., Bresee J. S., Shapiro C., Griffin P. M., Tauxe R. V. 1999; Food-related illness and death in the United States. Emerg Infect Dis 5:607–625 [CrossRef]
    [Google Scholar]
  37. Monte M. J., Marin J. J., Antelo A., Vazquez-Tato J. 2009; Bile acids: chemistry, physiology, and pathophysiology. World J Gastroenterol 15:804–816 [CrossRef]
    [Google Scholar]
  38. Nikaido E., Yamaguchi A., Nishino K. 2008; AcrAB multidrug efflux pump regulation in Salmonella enterica serovar Typhimurium by RamA in response to environmental signals. J Biol Chem 283:24245–24253 [CrossRef]
    [Google Scholar]
  39. Oh J. T., Cajal Y., Skowronska E. M., Belkin S., Chen J., Van Dyk T. K., Sasser M., Jain M. K. 2000; Cationic peptide antimicrobials induce selective transcription of micF and osmY in Escherichia coli . Biochim Biophys Acta 146343–54 [CrossRef]
    [Google Scholar]
  40. Ohl M. E., Miller S. I. 2001; Salmonella : a model for bacterial pathogenesis. Annu Rev Med 52:259–274 [CrossRef]
    [Google Scholar]
  41. Ohmori H., Saito M., Yasuda T., Nagata T., Fujii T., Wachi M., Nagai K. 1995; The pcsA gene is identical to dinD in Escherichia coli . J Bacteriol 177:156–165
    [Google Scholar]
  42. Okoli A. S., Wadstrom T., Mendz G. L. 2007; MiniReview: bioinformatic study of bile responses in Campylobacterales . FEMS Immunol Med Microbiol 49:101–123 [CrossRef]
    [Google Scholar]
  43. Paterson G. K., Northen H., Cone D. B., Willers C., Peters S. E., Maskell D. J. 2009; Deletion of tolA in Salmonella Typhimurium generates an attenuated strain with vaccine potential. Microbiology 155:220–228 [CrossRef]
    [Google Scholar]
  44. Picken R. N., Beacham I. R. 1977; Bacteriophage-resistant mutants of Escherichia coli k12 with altered lipopolysaccharide. Studies with concanavalin A. J Gen Microbiol 102:319–326 [CrossRef]
    [Google Scholar]
  45. Pierré A., Paoletti C. 1983; Purification and characterization of recA protein from Salmonella typhimurium . J Biol Chem 258:2870–2874
    [Google Scholar]
  46. Prieto A. I., Ramos-Morales F., Casadesus J. 2004; Bile-induced DNA damage in Salmonella enterica . Genetics 168:1787–1794 [CrossRef]
    [Google Scholar]
  47. Prieto A. I., Ramos-Morales F., Casadesus J. 2006; Repair of DNA damage induced by bile salts in Salmonella enterica . Genetics 174:575–584 [CrossRef]
    [Google Scholar]
  48. Prouty A. M., Van Velkinburgh J. C., Gunn J. S. 2002; Salmonella enterica serovar Typhimurium resistance to bile: identification and characterization of the tolQRA cluster. J Bacteriol 184:1270–1276 [CrossRef]
    [Google Scholar]
  49. Prouty A. M., Brodsky I. E., Falkow S., Gunn J. S. 2004; Bile-salt-mediated induction of antimicrobial and bile resistance in Salmonella typhimurium . Microbiology 150:775–783 [CrossRef]
    [Google Scholar]
  50. Pucciarelli M. G., Prieto A. I., Casadesus J., Garcia-del Portillo F. 2002; Envelope instability in DNA adenine methylase mutants of Salmonella enterica . Microbiology 148:1171–1182
    [Google Scholar]
  51. Ramos-Morales F., Prieto A. I., Beuzon C. R., Holden D. W., Casadesus J. 2003; Role for Salmonella enterica enterobacterial common antigen in bile resistance and virulence. J Bacteriol 185:5328–5332 [CrossRef]
    [Google Scholar]
  52. Ray M. C., Germon P., Vianney A., Portalier R., Lazzaroni J. C. 2000; Identification by genetic suppression of Escherichia coli TolB residues important for TolB-Pal interaction. J Bacteriol 182:821–824 [CrossRef]
    [Google Scholar]
  53. Ridlon J. M., Kang D.-J., Hylemon P. B. 2006; Bile salt biotransformations by human intestinal bacteria. J Lipid Res 47:241–259
    [Google Scholar]
  54. Rince A., Le Breton Y., Verneuil N., Giard J. C., Hartke A., Auffray Y. 2003; Physiological and molecular aspects of bile salt response in Enterococcus faecalis . Int J Food Microbiol 88:207–213 [CrossRef]
    [Google Scholar]
  55. Ruiz L., Sanchez B., Ruas-Madiedo P., De Los Reyes-Gavilan C. G., Margolles A. 2007; Cell envelope changes in Bifidobacterium animalis ssp. lactis as a response to bile. FEMS Microbiol Lett 274:316–322 [CrossRef]
    [Google Scholar]
  56. Ruiz L., Coute Y., Sanchez B., de los Reyes-Gavilan C. G., Sanchez J. C., Margolles A. 2009; The cell-envelope proteome of Bifidobacterium longum in an in vitro bile environment. Microbiology 155:957–967 [CrossRef]
    [Google Scholar]
  57. Sleator R. D., Wemekamp-Kamphuis H. H., Gahan C. G., Abee T., Hill C. 2005; A PrfA-regulated bile exclusion system (BilE) is a novel virulence factor in Listeria monocytogenes . Mol Microbiol 55:1183–1195
    [Google Scholar]
  58. Slocum M. M., Sittig K. M., Specian R. D., Deitch E. A. 1992; Absence of intestinal bile promotes bacterial translocation. Am Surg 58:305–310
    [Google Scholar]
  59. Stenfors Arnesen L. P., Fagerlund A., Granum P. E. 2008; From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol Rev 32:579–606 [CrossRef]
    [Google Scholar]
  60. Sulavik M. C., Dazer M., Miller P. F. 1997; The Salmonella typhimurium mar locus: molecular and genetic analyses and assessment of its role in virulence. J Bacteriol 179:1857–1866
    [Google Scholar]
  61. Taranto M. P., Fernandez Murga M. L., Lorca G., de Valdez G. F. 2003; Bile salts and cholesterol induce changes in the lipid cell membrane of Lactobacillus reuteri . J Appl Microbiol 95:86–91 [CrossRef]
    [Google Scholar]
  62. Tennant S. M., Hartland E. L., Phumoonna T., Lyras D., Rood J. I., Robins-Browne R. M., Van Driel I. R. 2008; Influence of gastric acid on susceptibility to infection with ingested bacterial pathogens. Infect Immun 76:639–645 [CrossRef]
    [Google Scholar]
  63. Thanassi D. G., Cheng L. W., Nikaido H. 1997; Active efflux of bile salts by Escherichia coli . J Bacteriol 179:2512–2518
    [Google Scholar]
  64. Van der Aa Kuhle A., Skovgaard K., Jespersen L. 2005; In vitro screening of probiotic properties of Saccharomyces cerevisiae var. boulardii and food-borne Saccharomyces cerevisiae strains. Int J Food Microbiol 101:29–39 [CrossRef]
    [Google Scholar]
  65. Van Velkinburgh J. C., Gunn J. S. 1999; PhoP-PhoQ-regulated loci are required for enhanced bile resistance in Salmonella spp. Infect Immun 67:1614–1622
    [Google Scholar]
  66. Weel-Sneve R., Bjoras M., Kristiansen K. I. 2008; Overexpression of the LexA-regulated tisAB RNA in E. coli inhibits SOS functions; implications for regulation of the SOS response. Nucleic Acids Res 36:6249–6259 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.014092-0
Loading
/content/journal/jmm/10.1099/jmm.0.014092-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed