1887

Abstract

Atmospheric plasma jets are being intensively studied with respect to potential applications in medicine. The aim of this study was to test a microwave-powered non-thermal atmospheric plasma jet for its antimicrobial efficacy against adherent oral micro-organisms. Agar plates and dentin slices were inoculated with 6 log c.f.u. cm of , and , with as a control. Areas of 1 cm on the agar plates or the complete dentin slices were irradiated with a helium plasma jet for 0.3, 0.6 or 0.9 s mm, respectively. The agar plates were incubated at 37 °C, and dentin slices were vortexed in liquid media and suspensions were placed on agar plates. The killing efficacy of the plasma jet was assessed by counting the number of c.f.u. on the irradiated areas of the agar plates, as well as by determination of the number of c.f.u. recovered from dentin slices. A microbe-killing effect was found on the irradiated parts of the agar plates for , , and . The plasma-jet treatment reduced the c.f.u. by 3–4 log intervals on the dentin slices in comparison to recovery rates from untreated controls. The microbe-killing effect was correlated with increasing irradiation times. Thus, non-thermal atmospheric plasma jets could be used for the disinfection of dental surfaces.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.013714-0
2010-02-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jmm/59/2/206.html?itemId=/content/journal/jmm/10.1099/jmm.0.013714-0&mimeType=html&fmt=ahah

References

  1. Badet C., Thebaud N. B. 2008; Ecology of lactobacilli in the oral cavity: a review of literature. Open Microbiol J 2:38–48 [CrossRef]
    [Google Scholar]
  2. Baysan A., Beighton D. 2007; Assessment of the ozone-mediated killing of bacteria in infected dentine associated with non-cavitated occlusal carious lesions. Caries Res 41:337–341 [CrossRef]
    [Google Scholar]
  3. Becker K., Koutsospyros A., Yin S.-M., Christodoulatos C., Abramzon N., Joaquin J. C., Brelles-Mariño M. 2005; Environmental and biological applications of microplasmas. Plasma Phys Contr Fusion 47:B513–B523 [CrossRef]
    [Google Scholar]
  4. Coulombe S., Léveillé V., Yonson S., Leask R. L. 2006; Miniature atmospheric pressure glow discharge torch (APGD- t ) for local biomedical applications. Pure Appl Chem 78:1147–1156
    [Google Scholar]
  5. Duan Y., Huang C., Yu Q. S. 2007; Cold plasma brush generated at atmospheric pressure. Rev Sci Instrum 78:015104 [CrossRef]
    [Google Scholar]
  6. Goree J., Liu B., Drake D., Stoffels E. 2006; Killing of S. mutans bacteria using a plasma needle at atmospheric pressure. IEEE Trans Plasma Sci 34:1317–1324 [CrossRef]
    [Google Scholar]
  7. Hannig M., Bott B. 1999; In-vitro pulp chamber temperature rise during composite resin polymerization with various light-curing sources. Dent Mater 15:275–281 [CrossRef]
    [Google Scholar]
  8. Hong Y. F., Kang J. G., Lee H. Y., Uhm H. S., Moon E., Park Y. H. 2009; Sterilization effect of atmospheric plasma on Escherichia coli and Bacillus subtilis endospores. Lett Appl Microbiol 48:33–37 [CrossRef]
    [Google Scholar]
  9. Kieft I. E., van Berkel J. J. B. N., Kieft E. R., Stoffels E. 2005; Radicals of plasma needle detected with fluorescent probe. In Plasma Processes and Polymers , chapter 22 pp 295–308 Edited by d'Agostino R., Favia P., Oehr C., Wertheimer M. R. Berlin: Wiley-VCH;
    [Google Scholar]
  10. Kim S. M., Kim J. I. 2006; Decomposition of biological macromolecules by plasma generated with helium and oxygen. J Microbiol 44:466–471
    [Google Scholar]
  11. Klinke T., Kneist S., de Soet J. J., Kuhlisch E., Mauersberger S., Forster A., Klimm W. 2009; Acid production by oral strains of Candida albicans and lactobacilli. Caries Res 43:83–91 [CrossRef]
    [Google Scholar]
  12. Laroussi M. 2002; Nonthermal decontamination of biological media by atmospheric-pressure plasmas: review, analysis, and prospects. IEEE Trans Plasma Sci 30:1409–1415 [CrossRef]
    [Google Scholar]
  13. Laroussi M., Leipold F. 2004; Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure. Int J Mass Spectrom 233:81–86 [CrossRef]
    [Google Scholar]
  14. Laroussi M., Lu X. 2005; Room-temperature atmospheric pressure plasma plume for biomedical applications. Appl Phys Lett 87:113902 [CrossRef]
    [Google Scholar]
  15. Lee K., Paek K. H., Ju W. T., Lee Y. 2006; Sterilization of bacteria, yeast, and bacterial endospores by atmospheric-pressure cold plasma using helium and oxygen. J Microbiol 44:269–275
    [Google Scholar]
  16. Manner H. 2008; Argon plasma coagulation therapy. Curr Opin Gastroenterol 24:612–616 [CrossRef]
    [Google Scholar]
  17. Masaoka S. 2007; Plasma sterilization of polyethylene terephthalate bottles by pulsed corona discharge at atmospheric pressure. Biocontrol Sci 12:59–63 [CrossRef]
    [Google Scholar]
  18. Miletic V., Ivanovic V., Dzeletovic B., Lezaja M. 2009; Temperature changes in silorane-, ormocer-, and dimethacrylate-based composites and pulp chamber roof during light-curing. J Esthet Restor Dent 21:122–132 [CrossRef]
    [Google Scholar]
  19. Moisan M., Barbeau J., Moreau S., Pelletier J., Tabrizian M., Yahia L. H. 2001; Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. Int J Pharm 226:1–21 [CrossRef]
    [Google Scholar]
  20. Rupf S., Hannig M., Breitung K., Schellenberger W., Eschrich K., Remmerbach T., Kneist S. 2008; Phenotypic heterogeneity of Streptococcus mutans in dentin. J Dent Res 87:1172–1176 [CrossRef]
    [Google Scholar]
  21. Sladek R. E. J., Stoffels E., Walraven R., Tielbeek P. J. A., Koolhoven R. A. 2004; Plasma treatment of dental cavities: a feasibility study. IEEE Trans Plasma Sci 32:1540–1543 [CrossRef]
    [Google Scholar]
  22. Sladek R. E., Filoche S. K., Sissons C. H., Stoffels E. 2007; Treatment of Streptococcus mutans biofilms with a nonthermal atmospheric plasma. Lett Appl Microbiol 45:318–323 [CrossRef]
    [Google Scholar]
  23. Stoffels E., Flikweert A. J., Stoffels W. W., Kroesen G. M. W. 2002; Plasma needle: a non-destructive atmospheric plasma source for fine surface treatment of (bio)materials. Plasma Sources Sci Technol 11:383–388 [CrossRef]
    [Google Scholar]
  24. Venezia R. A., Orrico M., Houston E., Yin S. M., Naumova Y. Y. 2008; Lethal activity of nonthermal plasma sterilization against microorganisms. Infect Control Hosp Epidemiol 29:430–436 [CrossRef]
    [Google Scholar]
  25. Vleugels M., Shama G., Deng X. T., Greenacre E., Brocklehurst T., Kong M. G. 2005; Atmospheric plasma inactivation of biofilm-forming bacteria for food safety control. IEEE Trans Plasma Sci 33:824–828 [CrossRef]
    [Google Scholar]
  26. Yu H., Perni S., Shi J. J., Wang D. Z., Kong M. G., Shama G. 2006; Effects of cell surface loading and phase of growth in cold atmospheric gas plasma inactivation of Escherichia coli K12. J Appl Microbiol 101:1323–1330 [CrossRef]
    [Google Scholar]
  27. Yu Q. S., Huang C., Hsieh F. H., Huff H., Duan Y. 2007; Bacterial inactivation using a low-temperature atmospheric plasma brush sustained with argon gas. J Biomed Mater Res B Appl Biomater 80:211–219
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.013714-0
Loading
/content/journal/jmm/10.1099/jmm.0.013714-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error