1887

Abstract

Multidrug resistance in several strains of has encouraged anti-cholera vaccine developmental attempts using various subcellular moieties. In order to examine the immunological efficacy of detoxified LPS (dLPS)-derived saccharide immunogens, activation of mouse peritoneal macrophages (MΦs) was investigated. The immunomodulatory effect was evaluated via induction of the pro-inflammatory cytokines tumour necrosis factor-, interleukin (IL)-1 and IL-6 and acceleration of nitric oxide (NO) and reactive oxygen species (ROS). Immunologically active structures triggered mouse peritoneal MΦs to secrete cytokines and release NO/ROS, even at concentrations as low as 12.5 μg ml. It was found that the O-specific polysaccharide moiety was more immunologically efficient than the glycolipid one, probably due to the position of 3-deoxy--manno-octulosonic acid. The results revealed effective structure–immunomodulating relationships of dLPS-derived moieties that are desirable in subcellular anti-cholera vaccine design.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.013599-0
2010-02-01
2024-09-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/59/2/158.html?itemId=/content/journal/jmm/10.1099/jmm.0.013599-0&mimeType=html&fmt=ahah

References

  1. Akagawa K. S., Tokumaga T. 1985; Lack of binding of bacterial lipopolysaccharide to mouse lung macrophages and restoration of binding by interferon gamma. J Exp Med 162:1444–1459 [CrossRef]
    [Google Scholar]
  2. Alexander Ch., Rietschel E. T. 2001; Bacterial lipopolysaccharides and innate immunity. J Endotoxin Res 7:167–202
    [Google Scholar]
  3. Boutonnier A., Villeneuve S., Nato F., Dassy B., Fournier J. M. 2001; Preparation, immunogenicity, and protective efficacy, in a murine model, of a conjugate vaccine composed of the polysaccharide moiety of the lipopolysaccharide of Vibrio cholerae O139 bound to tetanus toxoid. Infect Immun 69:3488–3493 [CrossRef]
    [Google Scholar]
  4. Cavaillon J. M. 1994; Cytokines and macrophages. Biomed Pharmacother 48:445–453 [CrossRef]
    [Google Scholar]
  5. Cavaillon J. M., Fitting C., Caroff M., Haeffner C. A., Vaillon N. 1989; Dissociation of cell-associated interleukin-1 (IL-1) and IL-1 release induced by lipopolysaccharide and lipid A. Infect Immun 57:791–797
    [Google Scholar]
  6. Chaby R. 2004; Lipopolysaccharide-binding molecules: transporters, blockers and sensors. Cell Mol Life Sci 61:1697–1713
    [Google Scholar]
  7. Chatterjee S. N., Chaudhuri K. 2003; Lipopolysaccharides of Vibrio cholerae . I. Physical and chemical characterization. Biochim Biophys Acta 163965–79 [CrossRef]
    [Google Scholar]
  8. Chatterjee S. N., Chaudhuri K. 2006; Lipopolysaccharides of Vibrio cholerae . III. Biological functions. Biochim Biophys Acta 1762:1–16 [CrossRef]
    [Google Scholar]
  9. Chernyak A., Kondo S., Wade T. K., Meeks M. D., Alzari P. M., Fournier J. M., Taylor R. K., Kovac P., Wade W. F. 2002; Induction of protective immunity by synthetic Vibrio cholerae hexasaccharide derived from Vibrio cholerae O1 Ogawa lipopolysaccharide bound to a carrier protein. J Infect Dis 185:950–952 [CrossRef]
    [Google Scholar]
  10. Chi D. S., Qui M., Krishnaswamy G., Li C. H., Stone W. 2003; Regulation of nitric oxide production from macrophages by lipopolysaccharide and catecholamines. Nitric Oxide 8:127–132 [CrossRef]
    [Google Scholar]
  11. Ding A. H., Nathan C. F., Stuehr D. J. 1988; Release of reactive nitrogen intermediate and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J Immunol 141:2407–2412
    [Google Scholar]
  12. Dube P. H., Handley S. A., Lewis J., Miller V. L. 2004; Prospective role of interleukin-6 during Yersinia enterocolitica infection is mediated through the modulation of inflammatory cytokines. Infect Immun 72:3561–3570 [CrossRef]
    [Google Scholar]
  13. Erridge C., Bennett-Guerrero E., Poxton I. R. 2002; Structure and function of lipopolysaccharides. Microbes Infect 4:837–851 [CrossRef]
    [Google Scholar]
  14. Forman H. J., Torres M. 2002; Reactive oxygen species and cell signaling. Respiratory burst in macrophage signaling. Am J Respir Crit Care Med 166:S4–S8 [CrossRef]
    [Google Scholar]
  15. Gupta R. K., Szu S. C., Finkelstein R. A., Robbins J. B. 1992; Synthesis, characterization, and some immunological properties of conjugates composed of the detoxified lipopolysaccharide of Vibrio cholerae O1 serotype Inaba bound to cholera toxin. Infect Immun 60:3201–3208
    [Google Scholar]
  16. Haeffner-Cavaillon N., Bacle F., Caroff M., Cavaillon J. M. 1988; Characteristics of lipopolysaccharide-induced interleukin-1 production by human monocytes. Clinical relevance in patients undergoing hemodialysis. Prog Clin Biol Res 272:89–101
    [Google Scholar]
  17. Janeway C. A. Jr, Medzhitov R. 1999; Innate immunity: lipoproteins take their Toll on the host. Curr Biol 9:R879–R882 [CrossRef]
    [Google Scholar]
  18. Johnson A. G. 1994; Molecular adjuvants and immunomodulators: new approaches to immunization. Clin Microbiol Rev 7:277–289
    [Google Scholar]
  19. Koj A. 1985; Biological functions of acute phase proteins. In The Acute Phase Response to Injury and Infection . pp 139–144 Edited by Gordon A. H., Koj A. Amsterdam: Elsevier;
  20. Kondo S., Zahringer U., Seydel U., Sinnwell V., Hisatsune K., Rietschel E. T. 1991; Chemical structure of the carbohydrate backbone of Vibrio parahaemolyticus serotype 012 lipopolysaccharide. Eur J Biochem 200:689–698 [CrossRef]
    [Google Scholar]
  21. Kossaczka Z., Shiloach J., Johnson V., Taylor D. N., Finkelstein R. A., Robbins J. B., Szu S. C. 2000; Vibrio cholerae O139 conjugate vaccines: synthesis and immunogenicity of Vibrio cholerae O139 capsular polysaccharide conjugates with recombinant diphtheria toxin mutant in mice. Infect Immun 68:5037–5043 [CrossRef]
    [Google Scholar]
  22. Lebbar S., Cavaillon J. M., Caroff M., Ledur A., Brade H., Sarfati R., Haeffner-Cavaillon N. 1986; Molecular requirement for interleukin 1 induction by lipopolysaccharide-stimulated human monocytes: involvement of heptosyl-2-keto-deoxyoctulosonate region. Eur J Immunol 16:87–91 [CrossRef]
    [Google Scholar]
  23. Mosser D. M., Zhang X. 2008; Activation of murine macrophages. Current Protoc Immunol 83:14.2.1–14.2.8
    [Google Scholar]
  24. Opal S. M., dePalo V. A. 2000; Anti-inflammatory cytokines. Chest 117:1162–1172 [CrossRef]
    [Google Scholar]
  25. Otterlei M., Sundan A., Skjak-Braek G., Ryan L., Smidsrod O., Espevik T. 1993; Similar mechanisms of action of defined polysaccharides and lipopolysaccharides: characterization of binding and tumor necrosis factor alpha induction. Infect Immun 61:1917–1925
    [Google Scholar]
  26. Park J., Rikihisha Y. 1991; Inhibition of Ehrlichia risticii infection in murine peritoneal macrophages by gamma interferon, a calcium ionophore and concanavalin A. Infect Immun 59:3418–3423
    [Google Scholar]
  27. Paulovičová E., Machová E., Hoštacká A., Bystrický S. 2006; Immunological properties of complex conjugates based on Vibrio cholerae O1 Ogawa lipopolysaccharide antigen. Clin Exp Immunol 144:521–527 [CrossRef]
    [Google Scholar]
  28. Rabehi L., Irinopoulou T., Cholley N., Haeffner-Cavaillon N., Carreno M. P. 2001; Gram-positive and Gram-negative bacteria do not trigger monocytic cytokine production through similar intracellular pathways. Infect Immun 69:4590–4599 [CrossRef]
    [Google Scholar]
  29. Rietschel E. T., Brade H., Holst O., Brade L., Muller-Leonnies S., Mamat U., Zahringer U., Beckman F., Seydel U. other authors 1996; Bacterial endotoxin: chemical constitution, biological recognition, host response, and immunological detoxification. Curr Top Microbiol Immunol 216:39–81
    [Google Scholar]
  30. Roychowdhury A., Pan A., Dutta D., Mukhopadhyay A. K., Ramamurthy T., Nandy R. K., Bhattacharya S. K. 2008; Emergence of tetracycline-resistent Vibrio cholerae O1 serotype Inaba in Kolkata, India. Jpn J Infect Dis 61:128–129
    [Google Scholar]
  31. Scheibenbogen C., Andreesen R. 1991; Developmental regulation of the cytokine repertoire in human macrophages: IL-1, IL-6, TNF- α and M-CSF. J Leukoc Biol 50:35–42
    [Google Scholar]
  32. Tanamoto K., Zähringer U., McKenzie G. R., Galanos C., Rietschel E. T., Lüderitz O., Kusumoto S., Shiba T. 1984; Biological activities of synthetic lipid A analogs: pyrogenicity, lethal toxicity, anticomplement activity, and induction of gelation of Limulus amoebocyte lysate. Infect Immun 44:421–426
    [Google Scholar]
  33. Tilg H., Trehu E., Atkins M. B., Dinarello C. A., Mier J. W. 1994; Interleukin-6 (IL-6) as an anti-inflammatory cytokine: induction of circulating IL-1 receptor anagonist and soluble tumor necrosis factor receptor p55. Blood 83:113–118
    [Google Scholar]
  34. Viswanathan V. K., Sharma R., Hecht G. 2004; Microbes and their products – physiological effects upon mammalian mucosa. Adv Drug Deliv Rev 56:727–762 [CrossRef]
    [Google Scholar]
  35. Waage A., Brandtzaeg P., Espevik T., Halstensen A. 1991; Current understanding of the pathogenesis of Gram-negative shock. Infect Dis Clin North Am 5:781–791
    [Google Scholar]
  36. Westphal O., Jann K. 1965; Bacterial lipopolysaccharides. Extraction with phenol–water and further application of the procedure. Methods Carbohydr Res 5:83–91
    [Google Scholar]
  37. Yamamoto T., Taneike I., Tamura Y., Wakisaka-Saito N. 2000; Multiple drug resistance of Vibrio cholerae O1 and O139 isolated from various regions of the world: changes in the past 10 years. Acta Med Biol 48:75–88
    [Google Scholar]
/content/journal/jmm/10.1099/jmm.0.013599-0
Loading
/content/journal/jmm/10.1099/jmm.0.013599-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error