1887

Abstract

Isolates of harbouring the carbapenemase KPC may have carbapenem MICs that remain in the susceptible range, and may therefore go unrecognized. To understand the mechanisms contributing to the variability in carbapenem MICs, 20 clinical isolates, all belonging to either of two clonal groups of KPC-possessing endemic to New York City, were examined. Expression of genes encoding KPC, the porins OmpK35 and OmpK36, and the efflux pump AcrAB was examined by real-time RT-PCR. Outer-membrane profiles of selected KPC-producing isolates were examined by SDS-PAGE, and proteins were identified by matrix-assisted laser desorption/ionization mass spectrometry. The identification of SHV and TEM -lactamases and the genomic sequences of and were determined by PCR and DNA sequencing, respectively. For one clonal group, carbapenem MICs increased with decreasing expression of . A second clonal group also had carbapenem MICs that correlated with expression. However, all of the isolates in this latter group continued to produce OmpK36, suggesting that porin configuration may affect entry of carbapenems. For isolates that had the greatest expression of , carbapenem MICs tended to be lower when determined by the broth microdilution technique, and scattered colonies were seen around the Etest zones of inhibition. All of the KPC-producing isolates were highly resistant to ertapenem, regardless of expression. In conclusion, isolates of KPC-possessing that express tend to have lower MICs to carbapenems and therefore may be more difficult to detect by clinical laboratories. Regardless of expression, all of the KPC producers were consistently resistant to ertapenem.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.012575-0
2009-10-01
2019-09-21
Loading full text...

Full text loading...

/deliver/fulltext/jmm/58/10/1303.html?itemId=/content/journal/jmm/10.1099/jmm.0.012575-0&mimeType=html&fmt=ahah

References

  1. Albertí, S., Rodríquez-Quiñones, F., Schirmer, T., Rummel, G., Tomás, J. M., Rosenbusch, J. P. & Benedí, V. J. ( 1995; ). A porin from Klebsiella pneumoniae: sequence homology, three-dimensional model, and complement binding. Infect Immun 63, 903–910.
    [Google Scholar]
  2. Anderson, K. F., Lonsway, D. R., Rasheed, J. K., Biddle, J., Jensen, B., McDougal, L. K., Carey, R. B., Thompson, A., Stocker, S. & other authors ( 2007; ). Evaluation of methods to identify the Klebsiella pneumoniae carbapenemase in Enterobacteriaceae. J Clin Microbiol 45, 2723–2725.[CrossRef]
    [Google Scholar]
  3. Ardanuy, C., Liñares, J., Domínguez, M. A., Hernández-Allés, S., Benedí, V. J. & Martínez-Martínez, L. ( 1998; ). Outer membrane profiles of clonally related Klebsiella pneumoniae isolates from clinical samples and activities of cephalosporins and carbapenems. Antimicrob Agents Chemother 42, 1636–1640.
    [Google Scholar]
  4. Bradford, P. A., Urban, C., Mariano, N., Projan, S. J., Rahal, J. J. & Bush, K. ( 1997; ). Imipenem resistance in Klebsiella pneumoniae is associated with the combination of ACT-1, a plasmid-mediated AmpC β-lactamase, and the loss of an outer membrane protein. Antimicrob Agents Chemother 41, 563–569.
    [Google Scholar]
  5. Bratu, S., Landman, D., Haag, R., Recco, R., Eramo, A., Alam, M. & Quale, J. ( 2005a; ). Rapid spread of carbapenem-resistant Klebsiella pneumoniae in New York City. Arch Intern Med 165, 1430–1435.[CrossRef]
    [Google Scholar]
  6. Bratu, S., Mooty, M., Nichani, S., Landman, D., Gullans, C., Pettinato, B., Karumudi, U., Tolaney, P. & Quale, J. ( 2005b; ). Emergence of KPC-possessing Klebsiella pneumoniae in Brooklyn, New York: epidemiology and recommendations for detection. Antimicrob Agents Chemother 49, 3018–3030.[CrossRef]
    [Google Scholar]
  7. Bratu, S., Brooks, S., Burney, S., Kochar, S., Gupta, J., Landman, D. & Quale, J. ( 2007; ). Detection and spread of Escherichia coli possessing the plasmid-borne carbapenemase KPC-2 in Brooklyn, New York. Clin Infect Dis 44, 972–975.[CrossRef]
    [Google Scholar]
  8. Cai, J. C., Zhou, H. W., Zhang, R. & Chen, G.-X. ( 2008; ). Emergence of Serratia marcescens, Klebsiella pneumoniae, and Escherichia coli isolates possessing the plasmid-mediated carbapenem-hydrolyzing β-lactamase KPC-2 in intensive care units of a Chinese hospital. Antimicrob Agents Chemother 52, 2014–2018.[CrossRef]
    [Google Scholar]
  9. Cao, V. T. B., Arlet, G., Ericsson, B.-M., Tammelin, A., Courvalin, P. & Lanbert, T. ( 2000; ). Emergence of imipenem resistance in Klebsiella pneumoniae owing to combination of plasmid-mediated CMY-4 and permeability alteration. J Antimicrob Chemother 46, 895–900.[CrossRef]
    [Google Scholar]
  10. CLSI ( 2006; ). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, 7th edn. Approved Standard M7-A7. Wayne, PA: Clinical and Laboratory Standards Institute.
  11. Crowley, B., Benedí, V. J. & Doménech-Sánchez, A. ( 2002; ). Expression of SHV-2 β-lactamase and reduced amounts of OmpK36 porin in Klebsiella pneumoniae results in increased resistance to cephalosporins and carbapenems. Antimicrob Agents Chemother 46, 3679–3682.[CrossRef]
    [Google Scholar]
  12. Doménech-Sánchez, A., Hernández-Allés, S., Martínez-Martínez, L., Benedí, V. J. & Albertí, S. ( 1999; ). Identification and characterization of a new porin gene of Klebsiella pneumoniae: its role in β-lactam antibiotic resistance. J Bacteriol 181, 2726–2732.
    [Google Scholar]
  13. Doménech-Sánchez, A., Pascual, A., Suárez, A. I., Alvarez, D., Benedí, V. J. & Martínez-Martínez, L. ( 2000; ). Activity of nine antimicrobial agents against clinical isolates of Klebsiella pneumoniae producing extended-spectrum β-lactamases and deficient or not in porins. J Antimicrob Chemother 46, 858–860.[CrossRef]
    [Google Scholar]
  14. Doménech-Sánchez, A., Martínez-Martínez, L., Hernández-Allés, S., del Carmen Conejo, M., Pascual, A., Tomás, T. M., Albertí, S. & Benedí, V. J. ( 2003; ). Role of Klebsiella pneumoniae OmpK35 porin in antimicrobial resistance. Antimicrob Agents Chemother 47, 3332–3335.[CrossRef]
    [Google Scholar]
  15. Elliott, E., Brink, A. J., van Greune, J., Els, Z., Woodford, N., Turton, J., Warner, M. & Livermore, D. M. ( 2006; ). In vivo development of ertapenem resistance in a patient with pneumonia caused by Klebsiella pneumoniae with an extended-spectrum β-lactamase. Clin Infect Dis 42, e95–e98.[CrossRef]
    [Google Scholar]
  16. Hernández-Allés, S., Albertí, S., Alvarez, D., Doménech-Sánchez, A., Martínez-Martínez, L., Gil, J., Tomás, J. M. & Benedí, V. J. ( 1999a; ). Porin expression in clinical isolates of Klebsiella pneumoniae. Microbiology 145, 673–679.[CrossRef]
    [Google Scholar]
  17. Hernández-Allés, S., Benedí, V. J., Martínez-Martínez, L., Pascual, A., Aguilar, A., Tomás, J. M. & Albertí, S. ( 1999b; ). Development of resistance during antimicrobial therapy caused by insertion sequence interruption of porin genes. Antimicrob Agents Chemother 43, 937–939.
    [Google Scholar]
  18. Jacoby, G. A., Mills, D. M. & Chow, N. ( 2004; ). Role of β-lactamases and porins in resistance to ertapenem and other β-lactams in Klebsiella pneumoniae. Antimicrob Agents Chemother 48, 3203–3206.[CrossRef]
    [Google Scholar]
  19. Kaczmarek, F. M., Dib-Hajj, F., Shang, W. & Gootz, T. D. ( 2006; ). High-level carbapenem resistance in a Klebsiella pneumoniae clinical isolate is due to the combination of bla ACT-1 β-lactamase production, porin OmpK35/36 insertional inactivation, and down-regulation of the phosphate transport porin PhoE. Antimicrob Agents Chemother 50, 3396–3406.[CrossRef]
    [Google Scholar]
  20. Landman, D., Bratu, S., Kochar, S., Panwar, M., Trehan, M., Doymaz, M. & Quale, J. ( 2007; ). Evolution of antimicrobial resistance among Pseudomonas aeruginosa, Acinetobacter baumannii and Klebsiella pneumoniae in Brooklyn, NY. J Antimicrob Chemother 60, 78–82.[CrossRef]
    [Google Scholar]
  21. Martínez-Martínez, L., Hernández-Allés, S., Albertí, S., Tomás, J. M., Venedi, V. J. & Jacoby, G. A. ( 1996; ). In vivo selection of porin-deficient mutants of Klebsiella pneumoniae with increased resistance to cefoxitin and expanded-spectrum cephalosporins. Antimicrob Agents Chemother 40, 342–348.
    [Google Scholar]
  22. Martínez-Martínez, L., Pascual, A., Hernández-Allés, S., Alvarez-Díaz, D., Suárez, A. I., Tran, J., Benedí, V. J. & Jacoby, G. ( 1999; ). Roles of β-lactamases and porins in activities of carbapenems and cephalosporins against Klebsiella pneumoniae. Antimicrob Agents Chemother 43, 1669–1673.
    [Google Scholar]
  23. Mena, A., Plasencia, V., García, L., Hidalgo, O., Ayestarán, J. I., Albertí, S., Borrell, N., Pérez, J. L. & Oliver, A. ( 2006; ). Characterization of a large outbreak by CTX-M-1-producing Klebsiella pneumoniae and mechanisms leading to in vivo carbapenem resistance development. J Clin Microbiol 44, 2831–2837.[CrossRef]
    [Google Scholar]
  24. Nikaido, H. ( 1996; ). Multidrug efflux pumps of Gram-negative bacteria. J Bacteriol 178, 5853–5859.
    [Google Scholar]
  25. Paterson, D. L., Hujer, K. M., Hujer, A. M., Yeiser, B., Bonomo, M. D., Rice, L. B., Bonomo, R. A. & the International Klebsiella Group ( 2003; ). Extended-spectrum β-lactamases in Klebsiella pneumoniae bloodstream isolates from seven countries: dominance and widespread prevalence of SHV- and CTX-M-type β-lactamases. Antimicrob Agents Chemother 47, 3554–3560.[CrossRef]
    [Google Scholar]
  26. Queenan, A. M. & Bush, K. ( 2007; ). Carbapenemases: the versatile β-lactamases. Clin Microbiol Rev 20, 440–458.[CrossRef]
    [Google Scholar]
  27. Sambrook, J. & Russell, D. W. ( 2001; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  28. Tenover, F. C., Kalsi, R. K., Williams, P. P., Carey, R. B., Stocker, S., Lonsway, D., Rasheed, J. K., Biddle, D. W., McGowan, J. E., Jr & Hanna, B. ( 2006; ). Carbapenem resistance in Klebsiella pneumoniae not detected by automated susceptibility testing. Emerg Infect Dis 12, 1209–1213.[CrossRef]
    [Google Scholar]
  29. Woodford, N., Tierno, P. M., Jr, Young, K., Tysall, L., Palepou, M.-F. I., Ward, E., Painter, R. E., Suber, D. F., Shungu, D. & other authors ( 2004; ). Outbreak of Klebsiella pneumoniae producing a new carbapenem-hydrolyzing class A β-lactamase, KPC-3, in a New York Medical Center. Antimicrob Agents Chemother 48, 4793–4799.[CrossRef]
    [Google Scholar]
  30. Woodford, N., Dallow, J. W. T., Hill, R. L. R., Palepou, M.-F. I., Pike, R., Ward, M. E., Warner, M. & Livermore, D. M. ( 2007; ). Ertapenem resistance among Klebsiella and Enterobacter submitted in the UK to a reference laboratory. Int J Antimicrob Agents 29, 456–459.[CrossRef]
    [Google Scholar]
  31. Yigit, H., Queenan, A. M., Anderson, G. J., Doménech-Sánchez, A., Biddle, J. W., Steward, C. D., Albertí, S., Bush, K. & Tenover, F. C. ( 2001; ). Novel carbapenem-hydrolyzing β-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother 45, 1151–1161.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.012575-0
Loading
/content/journal/jmm/10.1099/jmm.0.012575-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error