1887

Abstract

is the aetiological agent of botulism, a disease marked by flaccid paralysis that can progress to asphyxiation and death. This species is defined by the production of one of the botulinum neurotoxins (BoNTs), which are the most potent toxins known. Because of their potency, these toxins have the potential to be used as biological weapons, and therefore has been classified as a category A select agent. There are four related but antigenically distinct BoNT types that cause disease in humans, A, B, E and F. The mouse bioassay is the current gold standard by which BoNTs are confirmed. However, this method is expensive, slow and labour-intensive. Although PCR-based assays have been used extensively for the detection of BoNT-producing bacteria in food, animals and faecal samples, and recently to help diagnose disease in humans, no real-time quantitative PCR (qPCR) assay has yet been developed that can identify and differentiate all four BoNTs that cause disease in humans. This report describes the development of a qPCR single-tube assay that uniquely identifies these four BoNTs responsible for human disease. A total of 79 isolates with varying toxin types was evaluated in this study, as well as numerous near-neighbours and other bacterial species. The results showed that this quadruplex assay was capable of detecting any of the four toxin genes in a given sample at a sensitivity of about 130–840 fg genomic DNA and could detect the presence of up to all four BoNT genes simultaneously in a given sample. The assay was also functional in the presence of extraneous organic matter commonly found in various environmental samples.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.012567-0
2010-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/59/1/55.html?itemId=/content/journal/jmm/10.1099/jmm.0.012567-0&mimeType=html&fmt=ahah

References

  1. Akbulut D., Grant K. A., McLauchlin J. 2004; Development and application of real-time PCR assays to detect fragments of the Clostridium botulinum types A, B, and E neurotoxin genes for investigation of human foodborne and infant botulism. Foodborne Pathog Dis 1:247–257 [CrossRef]
    [Google Scholar]
  2. Aranda E., Rodríguez M., Asensio M., Córdoba J. 1997; Detection of Clostridium botulinum types A, B, E and F in foods by PCR and DNA probe. Lett Appl Microbiol 25:186–190 [CrossRef]
    [Google Scholar]
  3. Arndt J. W., Jacobson M. J., Abola E. E., Forsyth C. M., Tepp W. H., Marks J. D., Johnson E. A., Stevens R. C. 2006; A structural perspective of the sequence variability within botulinum neurotoxin subtypes A1–A4. J Mol Biol 362:733–742 [CrossRef]
    [Google Scholar]
  4. Barash J. R., Arnon S. S. 2004; Dual toxin-producing strain of Clostridium botulinum type BF isolated from a California patient with infant botulism. J Clin Microbiol 42:1713–1715 [CrossRef]
    [Google Scholar]
  5. Bartram U., Singer D. 2004; Infant botulism and sudden infant death syndrome. Klin Padiatr 216:26–30 (in German [CrossRef]
    [Google Scholar]
  6. Braconnier A., Broussolle V., Nguyen-The C., Carlin F. 2001; Screening for Clostridium botulinum type A, B, and E in cooked chilled foods containing vegetables and raw material using polymerase chain reaction and molecular probes. J Food Prot 64:201–207
    [Google Scholar]
  7. Carter A. T., Paul C. J., Mason D. R., Twine S. M., Alston M. J., Logan S. M., Austin J. W., Peck M. W. 2009; Independent evolution of neurotoxin and flagellar genetic loci in proteolytic Clostridium botulinum . BMC Genomics 10:115 [CrossRef]
    [Google Scholar]
  8. Chen Y., Korkeala H., Aarnikunnas J., Lindström M. 2007; Sequencing the botulinum neurotoxin gene and related genes in Clostridium botulinum type E strains reveals orfx3 and a novel type E neurotoxin subtype. J Bacteriol 189:8643–8650 [CrossRef]
    [Google Scholar]
  9. Collins M. D., East A. K. 1998; Phylogeny and taxonomy of the food-borne pathogen Clostridium botulinum and its neurotoxins. J Appl Microbiol 84:5–17 [CrossRef]
    [Google Scholar]
  10. Córdoba J. J., Collins M. D., East A. K. 1995; Studies on the genes encoding botulinum neurotoxin type A of C. botulinum from a variety of sources. Syst Appl Microbiol 18:13–22 [CrossRef]
    [Google Scholar]
  11. Dietmaier W., Hofstadter F. 2001; Detection of microsatellite instability by real time PCR and hybridization probe melting point analysis. Lab Invest 81:1453–1456 [CrossRef]
    [Google Scholar]
  12. Fach P., Hauser D., Guillou J. P., Popoff M. R. 1993; Polymerase chain reaction for the rapid identification of Clostridium botulinum type A strains and detection in food samples. J Appl Bacteriol 75:234–239 [CrossRef]
    [Google Scholar]
  13. Fach P., Gibert M., Griffais R., Guillou J. P., Popoff M. R. 1995; PCR and gene probe identification of botulinum neurotoxin A-, B-, E-, F-, and G-producing Clostridium spp. and evaluation in food samples. Appl Environ Microbiol 61:389–392
    [Google Scholar]
  14. Fach P., Perelle S., Dilasser F., Grout J., Dargaignaratz C., Botella L., Gourreau J. M., Carlin F., Popoff M. R., Broussolle V. 2002; Detection by PCR-enzyme-linked immunosorbent assay of Clostridium botulinum in fish and environmental samples from a coastal area in northern France. Appl Environ Microbiol 68:5870–5876 [CrossRef]
    [Google Scholar]
  15. Fach P., Micheau P., Mazuet C., Perelle S., Popoff M. 2009; Development of real-time PCR tests for detecting botulinum neurotoxins A, B, E, F producing Clostridium botulinum , Clostridium baratii and Clostridium butyricum . J Appl Microbiol 107:465–473 [CrossRef]
    [Google Scholar]
  16. Franciosa G., Ferreira J. L., Hatheway C. L. 1994; Detection of type A, B, and E botulism neurotoxin genes in Clostridium botulinum and other Clostridium species by PCR: evidence of unexpressed type B toxin genes in type A toxigenic organisms. J Clin Microbiol 32:1911–1917
    [Google Scholar]
  17. Franz D. R., Jahrling P. B., Friedlander A. M., McClain D. J., Hoover D. L., Bryne W. R., Pavlin J. A., Christopher G. W., Eitzen E. M. 1997; Clinical recognition and management of patients exposed to biological warfare agents. JAMA 278:399–411 [CrossRef]
    [Google Scholar]
  18. Giménez D. F., Ciccarelli A. S. 1970; Another type of Clostridium botulinum . Zentralbl Bakteriol Orig 215:221–224
    [Google Scholar]
  19. Hatheway C. L. 1990; Toxigenic clostridia. Clin Microbiol Rev 3:66–98
    [Google Scholar]
  20. Hatheway C. L., McCroskey L. M. 1989; Unusual neurotoxigenic clostridia recovered from human fecal specimens in the investigation of botulism. In Proceedings of the 5th International Symposium on Microbial Ecology: Recent Advances in Microbial Ecology pp 477–481 Edited by Hattori T., Ishida Y., Maruyama Y., Morita R. Y., Uchida A. Tokyo: Scientific Societies Press;
    [Google Scholar]
  21. Heffron A., Poxton I. 2007; A PCR approach to determine the distribution of toxin genes in closely related Clostridium species: Clostridium botulinum type C and D neurotoxins and C2 toxin, and Clostridium novyi α toxin. J Med Microbiol 56:196–201 [CrossRef]
    [Google Scholar]
  22. Hill K. K., Smith T. J., Helma C. H., Ticknor L. O., Foley B. T., Svensson R. T., Brown J. L., Johnson E. A., Smith L. A. other authors 2007; Genetic diversity among botulinum neurotoxin-producing Clostridial strains. J Bacteriol 189:818–832 [CrossRef]
    [Google Scholar]
  23. Kasai Y., Kimura B., Tarima Y., Fujii T. 2007; Quantitative duplex PCR of Clostridium botulinum types A and B neurotoxin genes. Shokuhin Eiseigaku Zasshi 48:19–26 [CrossRef]
    [Google Scholar]
  24. Kimura B., Kawasaki S., Nakano H., Fujii T. 2001; Rapid, quantitative PCR monitoring of growth of Clostridium botulinum type E in modified-atmosphere-packaged fish. Appl Environ Microbiol 67:206–216 [CrossRef]
    [Google Scholar]
  25. Lindström M. K., Jankola H. M., Hielm S., Hyytiä E. K., Korkeala H. J. 1999; Identification of Clostridium botulinum with API 20 A, Rapid ID 32 A and RapID ANA II. FEMS Immunol Med Microbiol 24:267–274 [CrossRef]
    [Google Scholar]
  26. Lindström M., Keto R., Markkula A., Nevas M., Hielm S., Korkeala H. 2001; Multiplex PCR assay for detection and identification of Clostridium botulinum types A, B, E, F in and food and fecal material. Appl Environ Microbiol 675694–5699 [CrossRef]
    [Google Scholar]
  27. Lyon E. 2001; Mutation detection using fluorescent hybridization probes and melting curve analysis. Expert Rev Mol Diagn 1:92–101 [CrossRef]
    [Google Scholar]
  28. Poumeyrol M., Billon J., Delille F., Haas C., Marmonier A., Sebald M. 1983; Fatal case of botulism due to a type AB Clostridium botulinum strain. Med Mal Infect 13:750–754 (in French [CrossRef]
    [Google Scholar]
  29. Prévot V., Tweepenninckx F., Van Nerom E., Linden A., Content J., Kimpe A. 2007; Optimization of polymerase chain reaction for detection of Clostridium botulinum type C and D in bovine samples. Zoonoses Public Health 54:320–327 [CrossRef]
    [Google Scholar]
  30. Smith L. de S., Sugiyama H. 1988 Botulism: the Organism, its Toxins, the Disease , 2nd edn. Springfield, IL: Charles C. Thomas;
    [Google Scholar]
  31. Smith T. J., Lou I. N., Geren C. M., Forsyth R., Tsai S. L., LaPorte W. H., Tepp M., Bradshaw E. A., Johnson L. A. other authors 2005; Sequence variation within botulinum neurotoxin serotypes impacts antibody binding and neutralization. Infect Immun 73:5450–5457 [CrossRef]
    [Google Scholar]
  32. Smith T. J., Hill K. K., Foley B. T., Detter J. C., Munk A. C., Bruce D. C., Doggett N. A., Smith L. A., Marks J. D. other authors 2007; Analysis of the neurotoxin complex genes in Clostridium botulinum A1–A4 and B1 strains: BoNT/A3, /Ba4 and /B1 clusters are located within plasmids. PLoS One 2:e1271 [CrossRef]
    [Google Scholar]
  33. Song Y., Liu C., Finegold S. M. 2004; Real-time PCR quantitation of clostridia in feces of autistic children. Appl Environ Microbiol 70:6459–6465 [CrossRef]
    [Google Scholar]
  34. Suen J. C., Hatheway C. L., Steigerwalt A. G., Brenner D. J. 1988; Clostridium argentinense sp. nov.: a genetically homogeneous group composed of all strains of Clostridium botulinum type G and some nontoxigenic strains previously identified as Clostridium subterminale or Clostridium hastiforme . Int J Syst Bacteriol 38:375–381 [CrossRef]
    [Google Scholar]
  35. Szabo E. A., Pemberton J. M., Desmarchelier P. M. 1993; Detection of the genes encoding botulinum neurotoxin types A to E by the polymerase chain reaction. Appl Environ Microbiol 59:3011–3020
    [Google Scholar]
  36. Takeshi K., Fujinaga Y., Inoue K., Nakajima H., Oguma K., Ueno T., Sunagawa H., Ohyama T. 1996; Simple method for detection of Clostridium botulinum type A to F neurotoxin genes by polymerase chain reaction. Microbiol Immunol 40:5–11 [CrossRef]
    [Google Scholar]
  37. Yoon S. Y., Chung G. T., Kang D. H., Ryu C., Yoo C. K., Seong W. K. 2005; Application of real-time PCR for quantitative detection of Clostridium botulinum type A toxin gene in food. Microbiol Immunol 49:505–511 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.012567-0
Loading
/content/journal/jmm/10.1099/jmm.0.012567-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error