Subinhibitory concentrations of moxifloxacin decrease adhesion and biofilm formation of from cystic fibrosis Free

Abstract

is an emerging nosocomial bacterial pathogen that is currently isolated with increasing frequency from the airways of cystic fibrosis (CF) patients. In this study the effect of subinhibitory concentrations (subMICs) of moxifloxacin on adhesion, biofilm formation and cell-surface hydrophobicity of two strains of isolated from CF patients were evaluated. Adhesion and biofilm formation assays were carried out on polystyrene and quantified by colony counts. Cell-surface hydrophobicity was determined by a test for adhesion to n-hexadecane. Moxifloxacin at 0.03× and 0.06× MIC caused a significant decrease in adhesion and biofilm formation by both strains tested. A significant reduction in cell-surface hydrophobicity following exposure to subMICs of moxifloxacin was observed for one strain only. The results of the present study provide an additional rationale for the use of moxifloxacin in CF patients and more generally in biofilm-related infections involving .

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.011981-0
2010-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/59/1/76.html?itemId=/content/journal/jmm/10.1099/jmm.0.011981-0&mimeType=html&fmt=ahah

References

  1. Avison M. B., Higgings C. S., von Heldreich C. J., Bennett P. M., Walsh T. R. 2001; Plasmid location and molecular heterogeneity of the L1 and L2 β -lactamase genes of Stenotrophomonas maltophilia . Antimicrob Agents Chemother 45:413–419 [CrossRef]
    [Google Scholar]
  2. Baskin H., Doğan Y., Bahar I. H., Yuluğ N. 2002; Effect of subminimal inhibitory concentrations of three fluoroquinolones on adherence of uropathogenic strains of Escherichia coli . Int J Antimicrob Agents 19:79–82 [CrossRef]
    [Google Scholar]
  3. Cerca N., Martins S., Sillankorva S., Jefferson K. K., Pier G. B., Oliveira R., Azeredo J. 2005; Effects of growth in the presence of subinhibitory concentrations of dicloxacillin on Staphylococcus epidermidis and Staphylococcus haemolyticus biofilms. Appl Environ Microbiol 71:8677–8682 [CrossRef]
    [Google Scholar]
  4. Chen K., Sun G. W., Chua K. L., Gan Y. H. 2005; Modified virulence of antibiotic-induced Burkholderia pseudomallei filaments. Antimicrob Agents Chemother 49:1002–1009 [CrossRef]
    [Google Scholar]
  5. Chisari G., Accossano S., Reibaldi M. 2002; Effect of aminoglycosides (sub-MICs) on adherence of coagulase-negative staphylococci to intraocular lens surface. J Chemother 14:574–578 [CrossRef]
    [Google Scholar]
  6. CLSI 2006 Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically , 7th edn, approved guideline M7–A7. Wayne, PA: Clinical and Laboratory Standards Institute;
    [Google Scholar]
  7. Conway S. P., Brownlee K. G., Denton M., Peckham D. G. 2003; Antibiotic treatment of multidrug-resistant organisms in cystic fibrosis. Am J Respir Med 2:321–332 [CrossRef]
    [Google Scholar]
  8. Costa G. F., Tognim M. C., Cardoso C. L., Carrara-Marrone F. E., Garcia L. B. 2006; Preliminary evaluation of adherence on abiotic and cellular surfaces of Acinetobacter baumannii strains isolated from catheter tips. Braz J Infect Dis 10:346–351
    [Google Scholar]
  9. Costerton J. W. 2001; Cystic fibrosis pathogenesis and the role of biofilms in persistent infection. Trends Microbiol 9:50–52 [CrossRef]
    [Google Scholar]
  10. Di Bonaventura G., Spedicato I., D'Antonio D., Robuffo I., Piccolomini R. 2004; Biofilm formation by Stenotrophomonas maltophilia : modulation by quinolones, trimethoprim-sulfamethoxazole, and ceftazidime. Antimicrob Agents Chemother 48:151–160 [CrossRef]
    [Google Scholar]
  11. Di Bonaventura G., Prosseda G., Del Chierico F., Cannavacciuolo S., Cipriani P., Petrucca A., Superti F., Ammendolia M. G., Concato C. other authors 2007; Molecular characterization of virulence determinants of Stenotrophomonas maltophilia strains isolated from patients affected by cystic fibrosis. Int J Immunopathol Pharmacol 20:529–537
    [Google Scholar]
  12. Di Bonaventura G., Pompilio A., Picciani C., Nicoletti M., Zappacosta R., Piccolomini R. 2008a; Adhesion to and biofilm formation on IB3-1 bronchial cells by Stenotrophomonas maltophilia : implications in cystic fibrosis. In 18th European Congress of Clinical Microbiology and Infectious Diseases Barcelona, Spain: April 2008; poster no: 704
    [Google Scholar]
  13. Di Bonaventura G., Pompilio A., Picciani C., Pomponio S., Verginelli F., Di Risio A., Mongiana M., Gherardi G., Fiscarelli E. other authors 2008b; Phenotypic and genotypic characterization of biofilm formation by Stenotrophomonas maltophilia isolated from patients with cystic fibrosis. In Proceedings of 36th Congress of the Italian Society of Microbiology Rome, Italy: October 2008; Poster no: 14
    [Google Scholar]
  14. Doyle R. J. 2000; Contribution of the hydrophobic effect to microbial infection. Microbes Infect 2:391–400 [CrossRef]
    [Google Scholar]
  15. Drago L., De Vecchi E., Nicola L., Gismondo M. R. 2005; Evaluation of antibacterial in vitro activity of moxifloxacin and its effects on pulmonary clearance of Klebsiella pneumoniae in an animal experimental model. Arzneimittelforschung 55:473–477
    [Google Scholar]
  16. Ebert D. L., Olivier K. N. 2002; Nontuberculous mycobacteria in cystic fibrosis. Infect Dis Clin North Am 16:221–233 [CrossRef]
    [Google Scholar]
  17. Fonseca A. P., Extremina C., Fonseca A. F., Sousa J. C. 2004; Effect of subinhibitory concentration of piperacillin/tazobactam on Pseudomonas aeruginosa . J Med Microbiol 53:903–910 [CrossRef]
    [Google Scholar]
  18. Galles A. C., Jones R. N., Sader H. S. 2008; Antimicrobial susceptibility profile of contemporary clinical strains of Stenotrophomonas maltophilia isolates: can moxifloxacin activity be predicted by levofloxacin MIC results?. J Chemother 20:38–42 [CrossRef]
    [Google Scholar]
  19. Giamarellos-Bourboulis E. J., Karnesis L., Galani I., Giamarellou H. 2002; In vitro killing effect of moxifloxacin on clinical isolates of Stenotrophomonas maltophilia resistant to trimethoprim-sulfamethoxazole. Antimicrob Agents Chemother 46:3997–3999 [CrossRef]
    [Google Scholar]
  20. Gould V. C., Avison M. B. 2006; SmeDEF-mediated antimicrobial drug resistance in Stenotrophomonas maltophilia clinical isolates having defined phylogenetic relationships. J Antimicrob Chemother 57:1070–1076 [CrossRef]
    [Google Scholar]
  21. Labro M. T., Pochet I., Babin-Chevaye C., Hakim J. 1987; Effect of ceftriaxone-induced alterations of bacteria on neutrophil bactericidal function. J Antimicrob Chemother 20:857–869 [CrossRef]
    [Google Scholar]
  22. Lorian V., Ernst J. 1987; Effects of antibiotic on bacterial structure and their pathogenicity. Pathol Biol 35:1370–1376
    [Google Scholar]
  23. Lorian V., Ernst J., Amaral L. 1989; The post-antibiotic effect defined by bacterial morphology. J Antimicrob Chemother 23:485–491 [CrossRef]
    [Google Scholar]
  24. Mattos-Guaraldi A. L., Formiga L. C., Andrade A. F. 1999; Cell surface hydrophobicity of sucrose fermenting and nonfermenting Corynebacterium diphtheriae strains evaluated by different methods. Curr Microbiol 38:37–42 [CrossRef]
    [Google Scholar]
  25. Muder R. R., Harris A. P., Muller S., Edmond M., Chow J. W., Papadakis K., Wagener M. W., Bodey G. P., Steckelberg J. M. 1996; Bacteremia due to Stenotrophomonas ( Xanthomonas ) maltophilia : a prospective, multicenter study of 91 episodes. Clin Infect Dis 22:508–512 [CrossRef]
    [Google Scholar]
  26. Nicodemo A. C., Paez J. I. 2007; Antimicrobial therapy for Stenotrophomonas maltophilia infections. Eur J Clin Microbiol Infect Dis 26:229–237 [CrossRef]
    [Google Scholar]
  27. O'Sullivan B. P., Freedman S. D. 2009; Cystic fibrosis. Lancet 373:1891–1904 [CrossRef]
    [Google Scholar]
  28. Pompilio A., Piccolomini R., Picciani C., D'Antonio D., Savini V., Di Bonaventura G. 2008; Factors associated with adherence to and biofilm formation on polystyrene by Stenotrophomonas maltophilia : the role of cell surface hydrophobicity and motility. FEMS Microbiol Lett 287:41–47 [CrossRef]
    [Google Scholar]
  29. Ryan R. P., Monchy S., Cardinale M., Taghavi S., Crossman L., Avison M. B., Berg G., van der Lelie D., Dow J. M. 2009; The versatility and adaptation of bacteria from the genus Stenotrophomonas . Nat Rev Microbiol 7:514–525 [CrossRef]
    [Google Scholar]
  30. Schubert S., Dalhoff A., Stass H., Ullmann U. 2005; Pharmacodynamics of moxifloxacin and levofloxacin simulating human serum and lung concentrations. Infection 33:15–21 [CrossRef]
    [Google Scholar]
  31. Whitby P. W., Carter K. B., Burns J. L., Royall J. A., LiPuma J. J., Stull T. L. 2000; Identification and detection of Stenotrophomonas maltophilia by rRNA-directed PCR. J Clin Microbiol 38:4305–4309
    [Google Scholar]
  32. Wojnicz D., Jankowski S. 2007; Effects of subinhibitory concentrations of amikacin and ciprofloxacin on the hydrophobicity and adherence to epithelial cells of uropathogenic Escherichia coli strains. Int J Antimicrob Agents 29:700–704 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.011981-0
Loading
/content/journal/jmm/10.1099/jmm.0.011981-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed