expressing a T-cell epitope from Sendai virus are able to induce anti-infection immunity Free

Abstract

Bacterial fimbriae can accept foreign peptides and display them on the cell surface. A highly efficient gene replacement method was used to generate peptide vaccines based on subsp. serovar Typhimurium LT2. DNA encoding an epitope from Sendai virus, SV9 (Sendai virus nucleoprotein peptide 324–332, FAPGNYPAL), which is known to induce cytotoxic T lymphocytes, was incorporated into the gene encoding AgfA (the major subunit protein of thin aggregative fimbriae of ) by replacing an equal length DNA segment. To improve cytotoxic T lymphocyte recognition, both termini of the peptide were flanked by double alanine (AA) or arginine (RR) residues. Western blotting and immunofluorescence microscopy using AgfA-specific antiserum verified the expression of chimeric AgfA; expression was also proved by a Congo red binding assay. Oral immunizations of C57BL/6 mice with the four strains induced an epitope-specific T-cell response (detected by enzyme-linked immunosorbent spot assay). When the mice were challenged with the Sendai virus, the magnitude of the infection was significantly reduced in the immunized groups compared with the controls. The fimbrial display system efficiently induces a cellular immune response and anti-infection immunity , providing a new strategy for the development of efficient peptide vaccination.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.011767-0
2009-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/58/9/1236.html?itemId=/content/journal/jmm/10.1099/jmm.0.011767-0&mimeType=html&fmt=ahah

References

  1. Anderson M. J., Pattison J. R., Heath R. B. 1979; The nature of the effector cells of cell-mediated immune responses to Sendai and Kunz virus infections in mice. Br J Exp Pathol 60:314–319
    [Google Scholar]
  2. Azuma I., Ishihara C., Iida J., Yoo Y. C., Yoshimatsu K., Arikawa J. 1992; Stimulation of host-defense mechanism with synthetic adjuvants and recombinant cytokines against viral infection in mice. Adv Exp Med Biol 319:253–263
    [Google Scholar]
  3. Collinson S. K., Emody L., Muller K. H., Trust T. J., Kay W. W. 1991; Purification and characterization of thin, aggregative fimbriae from Salmonella enteritidis . J Bacteriol 173:4773–4781
    [Google Scholar]
  4. Coulson N. M., Fulop M., Titball R. W. 1994; Effect of different plasmids on colonization of mouse tissues by the aromatic amino acid dependent Salmonella typhimurium SL 3261. Microb Pathog 16:305–311 [CrossRef]
    [Google Scholar]
  5. Doran J. L., Collinson S. K., Burian J., Sarlos G., Todd E. C., Munro C. K., Kay C. M., Banser P. A., Peterkin P. I., Kay W. W. 1993; DNA-based diagnostic tests for Salmonella species targeting agfA , the structural gene for thin, aggregative fimbriae. J Clin Microbiol 31:2263–2273
    [Google Scholar]
  6. Echchannaoui H., Bianchi M., Baud D., Bobst M., Stehle J. C., Nardelli-Haefliger D. 2008; Intravaginal immunization of mice with recombinant Salmonella enterica serovar Typhimurium expressing human papillomavirus type 16 antigens as a potential route of vaccination against cervical cancer. Infect Immun 76:1940–1951 [CrossRef]
    [Google Scholar]
  7. Garmory H. S., Titball R. W., Brown K. A., Bennett A. M. 2003; Construction and evaluation of a eukaryotic expression plasmid for stable delivery using attenuated Salmonella . Microb Pathog 34:115–119 [CrossRef]
    [Google Scholar]
  8. Haga T., Kumabe S., Ikejiri A., Shimizu Y., Li H., Goto Y., Matsui H., Miyata H., Miura T. 2006; In vitro and in vivo stability of plasmids in attenuated Salmonella enterica serovar Typhimurium used as a carrier of DNA vaccine is associated with its replication origin. Exp Anim 55:405–409 [CrossRef]
    [Google Scholar]
  9. Iida J., Saiki I., Ishihara C., Azuma I. 1989; Protective activity of recombinant cytokines against Sendai virus and herpes simplex virus (HSV) infections in mice. Vaccine 7:229–233 [CrossRef]
    [Google Scholar]
  10. Isoda R., Simanski S. P., Pathangey L., Stone A. E., Brown T. A. 2007; Expression of a Porphyromonas gingivalis hemagglutinin on the surface of a Salmonella vaccine vector. Vaccine 25:117–126 [CrossRef]
    [Google Scholar]
  11. Kast W. M., Roux L., Curren J., Blom H. J., Voordouw A. C., Meloen R. H., Kolakofsky D., Melief C. J. 1991; Protection against lethal Sendai virus infection by in vivo priming of virus-specific cytotoxic T lymphocytes with a free synthetic peptide. Proc Natl Acad Sci U S A 88:2283–2287 [CrossRef]
    [Google Scholar]
  12. Klemm P., Schembri M. A. 2000; Fimbrial surface display systems in bacteria: from vaccines to random libraries. Microbiology 146:3025–3032
    [Google Scholar]
  13. Kulkarni R. R., Parreira V. R., Sharif S., Prescott J. F. 2008; Oral immunization of broiler chickens against necrotic enteritis with an attenuated Salmonella vaccine vector expressing Clostridium perfringens antigens. Vaccine 26:4194–4203 [CrossRef]
    [Google Scholar]
  14. Mittrucker H. W., Kaufmann S. H. 2000; Immune response to infection with Salmonella typhimurium in mice. J Leukoc Biol 67:457–463
    [Google Scholar]
  15. Ochoa-Reparaz J., Sesma B., Alvarez M., Jesus Renedo M., Irache J. M., Gamazo C. 2004; Humoral immune response in hens naturally infected with Salmonella enteritidis against outer membrane proteins and other surface structural antigens. Vet Res 35:291–298 [CrossRef]
    [Google Scholar]
  16. Qu D., Wang S., Cai W., Du A. 2008; Protective effect of a DNA vaccine delivered in attenuated Salmonella typhimurium against Toxoplasma gondii infection in mice. Vaccine 26:4541–4548 [CrossRef]
    [Google Scholar]
  17. Romling U., Bian Z., Hammar M., Sierralta W. D., Normark S. 1998; Curli fibers are highly conserved between Salmonella typhimurium and Escherichia coli with respect to operon structure and regulation. J Bacteriol 180:722–731
    [Google Scholar]
  18. Sandberg J. K., Grufman P., Wolpert E. Z., Franksson L., Chambers B. J., Karre K. 1998; Superdominance among immunodominant H-2Kb-restricted epitopes and reversal by dendritic cell-mediated antigen delivery. J Immunol 160:3163–3169
    [Google Scholar]
  19. Scavone P., Miyoshi A., Rial A., Chabalgoity A., Langella P., Azevedo V., Zunino P. 2007; Intranasal immunisation with recombinant Lactococcus lactis displaying either anchored or secreted forms of Proteus mirabilis MrpA fimbrial protein confers specific immune response and induces a significant reduction of kidney bacterial colonisation in mice. Microbes Infect 9:821–828 [CrossRef]
    [Google Scholar]
  20. Schumacher T. N., De Bruijn M. L., Vernie L. N., Kast W. M., Melief C. J., Neefjes J. J., Ploegh H. L. 1991; Peptide selection by MHC class I molecules. Nature 350:703–706 [CrossRef]
    [Google Scholar]
  21. Spreng S., Dietrich G., Weidinger G. 2006; Rational design of Salmonella -based vaccination strategies. Methods 38:133–143 [CrossRef]
    [Google Scholar]
  22. Tiels P., Verdonck F., Coddens A., Goddeeris B., Cox E. 2008; The excretion of F18+ E. coli is reduced after oral immunisation of pigs with a FedF and F4 fimbriae conjugate. Vaccine 26:2154–2163 [CrossRef]
    [Google Scholar]
  23. van der Sluijs K. F., van Elden L., Nijhuis M., Schuurman R., Florquin S., Jansen H. M., Lutter R., van der Poll T. 2003; Toll-like receptor 4 is not involved in host defense against respiratory tract infection with Sendai virus. Immunol Lett 89:201–206 [CrossRef]
    [Google Scholar]
  24. Wang Y. J., Hou Y., Huang H., Liu G. R., White A. P., Liu S. L. 2008; Two oral HBx vaccines delivered by live attenuated Salmonella : both eliciting effective anti-tumor immunity. Cancer Lett 263:67–76 [CrossRef]
    [Google Scholar]
  25. White A. P., Collinson S. K., Burian J., Clouthier S. C., Banser P. A., Kay W. W. 1999; High efficiency gene replacement in Salmonella enteritidis : chimeric fimbrins containing a T-cell epitope from Leishmania major . Vaccine 17:2150–2161 [CrossRef]
    [Google Scholar]
  26. White A. P., Collinson S. K., Banser P. A., Dolhaine D. J., Kay W. W. 2000; Salmonella enteritidis fimbriae displaying a heterologous epitope reveal a uniquely flexible structure and assembly mechanism. J Mol Biol 296:361–372 [CrossRef]
    [Google Scholar]
  27. White A. P., Allen-Vercoe E., Jones B. W., DeVinney R., Kay W. W., Surette M. G. 2007; An efficient system for markerless gene replacement applicable in a wide variety of enterobacterial species. Can J Microbiol 53:56–62 [CrossRef]
    [Google Scholar]
  28. Xu C., Li Z. S., Du Y. Q., Gong Y. F., Yang H., Sun B., Jin J. 2007; Construction of recombinant attenuated Salmonella typhimurium DNA vaccine expressing H pylori ureB and IL-2. World J Gastroenterol 13:939–944 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.011767-0
Loading
/content/journal/jmm/10.1099/jmm.0.011767-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed