1887

Abstract

Xylitol is a sugar alcohol that inhibits the growth and adherence of . In clinical trials, xylitol has been shown to decrease the occurrence of acute otitis media in day-care children but did not decrease nasopharyngeal carriage of the pneumococci. It has also been shown that xylitol affects the ultrastructure of the pneumococcal capsule. Here, it was hypothesized that xylitol might affect the expression of pneumococcal capsular genes. Capsule gene expression levels were studied in 24 clinical pneumococcal isolates and one ATCC strain (49619) by using a real-time RT-PCR method targeting the mRNA of the second gene of the pneumococcal capsular locus, the gene. The isolates were exposed to 5 % glucose, 5 % xylitol and control medium (brain heart infusion medium containing 10 % fetal bovine serum) for 2 h. gene expression levels were measured by using a relative quantification method with calibrator normalization where the 16S rRNA gene of pneumococcus was used as a reference. Exposure to xylitol lowered gene expression levels significantly compared with those in the control (=0.035) and glucose (=0.011) media. This finding supports previous results where exposure to xylitol changed the ultrastructure of the pneumococcal capsule and could explain further the high clinical efficacy of xylitol in preventing otitis media.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.011700-0
2009-11-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/jmm/58/11/1470.html?itemId=/content/journal/jmm/10.1099/jmm.0.011700-0&mimeType=html&fmt=ahah

References

  1. Eleaume, H. & Jabbouri, S. ( 2004; ). Comparison of two standardisation methods in real-time quantitative RT-PCR to follow Staphylococcus aureus genes expression during in vitro growth. J Microbiol Methods 59, 363–370.[CrossRef]
    [Google Scholar]
  2. Hathaway, L. J., Bättig, P. & Mühlemann, K. ( 2007; ). In vitro expression of the first capsule gene of Streptococcus pneumoniae, cpsA, is associated with serotype-specific colonization prevalence and invasiveness. Microbiology 153, 2465–2471.[CrossRef]
    [Google Scholar]
  3. Hautalahti, O., Renko, M., Tapiainen, T., Kontiokari, T., Pokka, T. & Uhari, M. ( 2007; ). Failure of xylitol given three times a day for preventing acute otitis media. Pediatr Infect Dis J 26, 423–427.[CrossRef]
    [Google Scholar]
  4. Kim, J. O. & Weiser, J. N. ( 1998; ). Association of intrastrain phase variation in quantity of capsular polysaccharide and teichoic acid with the virulence of Streptococcus pneumoniae. J Infect Dis 177, 368–377.[CrossRef]
    [Google Scholar]
  5. Kontiokari, T., Uhari, M. & Koskela, M. ( 1995; ). Effect of xylitol on growth of nasopharyngeal bacteria in vitro. Antimicrob Agents Chemother 39, 1820–1823.[CrossRef]
    [Google Scholar]
  6. Kontiokari, T., Uhari, M. & Koskela, M. ( 1998; ). Antiadhesive effects of xylitol on otopathogenic bacteria. J Antimicrob Chemother 41, 563–565.[CrossRef]
    [Google Scholar]
  7. Kontiokari, T., Svanberg, M., Mattila, P., Leinonen, M. & Uhari, M. ( 1999; ). Quantitative analysis of the effect of xylitol on pneumococcal nasal colonisation in rats. FEMS Microbiol Lett 178, 313–317.[CrossRef]
    [Google Scholar]
  8. LeMessurier, K. S., Ogunniyi, A. D. & Paton, J. C. ( 2006; ). Differential expression of key pneumococcal virulence genes in vivo. Microbiology 152, 305–311.[CrossRef]
    [Google Scholar]
  9. Livak, K. J. & Schmittgen, T. D. ( 2001; ). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408.[CrossRef]
    [Google Scholar]
  10. Mäkinen, K. K., Bennett, C. A., Hujoel, P. P., Isokangas, P. J., Isotupa, K. P., Pape, H. R., Jr & Mäkinen, P. L. ( 1995; ). Xylitol chewing gums and caries rates: a 40-month cohort study. J Dent Res 74, 1904–1913.[CrossRef]
    [Google Scholar]
  11. McEllistrem, M. C., Ransford, J. V. & Khan, S. A. ( 2007; ). Characterization of in vitro biofilm-associated pneumococcal phase variants of a clinically relevant serotype 3 clone. J Clin Microbiol 45, 97–101.[CrossRef]
    [Google Scholar]
  12. Morona, J. K., Paton, J. C., Miller, D. C. & Morona, R. ( 2000; ). Tyrosine phosphorylation of CpsD negatively regulates capsular polysaccharide biosynthesis in Streptococcus pneumoniae. Mol Microbiol 35, 1431–1442.
    [Google Scholar]
  13. Morona, J. K., Morona, R., Miller, D. C. & Paton, J. C. ( 2002; ). Streptococcus pneumoniae capsule biosynthesis protein CpsB is a novel manganese-dependent phosphotyrosine-protein phosphatase. J Bacteriol 184, 577–583.[CrossRef]
    [Google Scholar]
  14. Morona, J. K., Miller, D. C., Morona, R. & Paton, J. C. ( 2004; ). The effect that mutations in the conserved capsular polysaccharide biosynthesis genes cpsA, cpsB, and cpsD have on virulence of Streptococcus pneumoniae. J Infect Dis 189, 1905–1913.[CrossRef]
    [Google Scholar]
  15. Oggioni, M. R., Trappetti, C., Kadioglu, A., Cassone, M., Iannelli, F., Ricci, S., Andrew, P. W. & Pozzi, G. ( 2006; ). Switch from planktonic to sessile life: a major event in pneumococcal pathogenesis. Mol Microbiol 61, 1196–1210.[CrossRef]
    [Google Scholar]
  16. Rogers, P. D., Liu, T. T., Barker, K. S., Hilliard, G. M., English, B. K., Thornton, J., Swiatlo, E. & McDaniel, L. S. ( 2007; ). Gene expression profiling of the response of Streptococcus pneumoniae to penicillin. J Antimicrob Chemother 59, 616–626.[CrossRef]
    [Google Scholar]
  17. Söderling, E. M., Ekman, T. C. & Taipale, T. J. ( 2008; ). Growth inhibition of Streptococcus mutans with low xylitol concentrations. Curr Microbiol 56, 382–385.[CrossRef]
    [Google Scholar]
  18. Tapiainen, T., Kontiokari, T., Sammalkivi, L., Ikäheimo, I., Koskela, M. & Uhari, M. ( 2001; ). Effect of xylitol on growth of Streptococcus pneumoniae in the presence of fructose and sorbitol. Antimicrob Agents Chemother 45, 166–169.[CrossRef]
    [Google Scholar]
  19. Tapiainen, T., Renko, M., Kontiokari, T. & Uhari, M. ( 2002; ). Xylitol concentrations in the saliva of children after chewing xylitol gum or consuming a xylitol mixture. Eur J Clin Microbiol Infect Dis 21, 53–55.[CrossRef]
    [Google Scholar]
  20. Tapiainen, T., Sormunen, R., Kaijalainen, T., Kontiokari, T., Ikäheimo, I. & Uhari, M. ( 2004; ). Ultrastructure of Streptococcus pneumoniae after exposure to xylitol. J Antimicrob Chemother 54, 225–228.[CrossRef]
    [Google Scholar]
  21. Tasara, T. & Stephan, R. ( 2007; ). Evaluation of housekeeping genes in Listeria monocytogenes as potential internal control references for normalizing mRNA expression levels in stress adaptation models using real-time PCR. FEMS Microbiol Lett 269, 265–272.[CrossRef]
    [Google Scholar]
  22. Uhari, M., Kontiokari, T., Koskela, M. & Niemelä, M. ( 1996; ). Xylitol chewing gum in prevention of acute otitis media: double blind randomised trial. BMJ 313, 1180–1184.[CrossRef]
    [Google Scholar]
  23. Uhari, M., Kontiokari, T. & Niemelä, M. ( 1998; ). A novel use of xylitol sugar in preventing acute otitis media. Pediatrics 102, 879–884.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.011700-0
Loading
/content/journal/jmm/10.1099/jmm.0.011700-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error