1887

Abstract

Oral biofilms are one of the greatest challenges in dental research. The present study aimed to investigate initial bacterial colonization of enamel surfaces using fluorescence hybridization (FISH) over a 12 h period. For this purpose, bovine enamel slabs were fixed on buccal sites of individual splints worn by six subjects for 2, 6 and 12 h to allow biofilm formation. Specimens were processed for FISH and evaluated with confocal laser-scanning microscopy, using probes for eubacteria, species, species, and . The number of adherent bacteria increased with time and all tested bacterial species were detected in the biofilm formed . The general percentage composition of the eubacteria did not change over the investigated period, but the number of streptococci, the most frequently detected species, increased significantly with time (2 h: 17.7±13.8 %; 6 h: 20.0±16.6 %; 12 h: 24.7±16.1 %). However, ≤1 % of the surface was covered with bacteria after 12 h of biofilm formation . In conclusion, FISH is an appropriate method for quantifying initial biofilm formation , and the proportion of streptococci increases during the first 12 h of bacterial adherence.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.011213-0
2009-10-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/jmm/58/10/1359.html?itemId=/content/journal/jmm/10.1099/jmm.0.011213-0&mimeType=html&fmt=ahah

References

  1. Aas, J. A., Paster, B. J., Stokes, L. N., Olsen, I. & Dewhirst, F. E. ( 2005; ). Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 43, 5721–5732.[CrossRef]
    [Google Scholar]
  2. Al-Ahmad, A., Wunder, A., Auschill, T. M., Follo, M., Braun, G., Hellwig, E. & Arweiler, N. B. ( 2007; ). The in vivo dynamics of Streptococcus spp., Actinomyces naeslundii, Fusobacterium nucleatum and Veillonella spp. in dental plaque biofilm as analysed by five-colour multiplex fluorescence in situ hybridization. J Med Microbiol 56, 681–687.[CrossRef]
    [Google Scholar]
  3. Al-Ahmad, A., Wiedmann-Al-Ahmad, M., Auschill, T. M., Follo, M., Braun, G., Hellwig, E. & Arweiler, N. B. ( 2008; ). Effects of commonly used food preservatives on biofilm formation of Streptococcus mutans in vitro. Arch Oral Biol 53, 765–772.[CrossRef]
    [Google Scholar]
  4. Amann, R. I. ( 1995; ). In situ identification of microorganisms by whole cell hybridization with rRNA-targeted nucleic acid probes. In Molecular Microbial Ecology Manual, vol. 3.3.6, pp. 1–15. Edited by A. D. L. Akkermans, J. D. van Elsas & F. J. de Bruijin. Dordrecht: Kluwer.
  5. Amann, R. I., Binder, B. J., Olson, R. J., Chisholm, S. W., Devereux, R. & Stahl, D. A. ( 1990; ). Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56, 1919–1925.
    [Google Scholar]
  6. Amann, R. I., Ludwig, W. & Schleifer, K. H. ( 1995; ). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59, 143–169.
    [Google Scholar]
  7. Beckers, H. J. & van der Hoeven, J. S. ( 1984; ). The effects of mutual interaction and host diet on the growth rates of the bacteria Actinomyces viscosus and Streptococcus mutans during colonization of tooth surfaces in di-associated gnotobiotic rats. Arch Oral Biol 29, 231–236.[CrossRef]
    [Google Scholar]
  8. Christersson, L. A., Zambon, J. J. & Genco, R. J. ( 1991; ). Dental bacterial plaques. Nature and role in periodontal disease. J Clin Periodontol 18, 441–446.[CrossRef]
    [Google Scholar]
  9. Deimling, D., Hannig, C., Hoth-Hannig, W., Schmitz, P., Schulte-Mönting, J. & Hannig, M. ( 2007; ). Non-destructive visualisation of protective proteins in the in situ pellicle. Clin Oral Investig 11, 211–216.[CrossRef]
    [Google Scholar]
  10. Delwiche, E. A., Pestka, J. J. & Tortorello, M. L. ( 1985; ). The Veillonellae: Gram-negative cocci with a unique physiology. Annu Rev Microbiol 39, 175–193.[CrossRef]
    [Google Scholar]
  11. Diaz, P. I., Chalmers, N. I., Rickard, A. H., Kong, C., Milburn, C. L., Palmer, R. J., Jr & Kolenbrander, P. E. ( 2006; ). Molecular characterization of subject-specific oral microflora during initial colonization of enamel. Appl Environ Microbiol 72, 2837–2848.[CrossRef]
    [Google Scholar]
  12. Dige, I., Nilsson, H., Kilian, M. & Nyvad, B. ( 2007; ). In situ identification of streptococci and other bacteria in initial dental biofilm by confocal laser scanning microscopy and fluorescence in situ hybridization. Eur J Oral Sci 115, 459–467.[CrossRef]
    [Google Scholar]
  13. Douglas, C. W. ( 1994; ). Bacterial–protein interactions in the oral cavity. Adv Dent Res 8, 254–262.
    [Google Scholar]
  14. Foster, J. S. & Kolenbrander, P. E. ( 2004; ). Development of a multispecies oral bacterial community in a saliva-conditioned flow cell. Appl Environ Microbiol 70, 4340–4348.[CrossRef]
    [Google Scholar]
  15. Guggenheim, M., Shapiro, S., Gmür, R. & Guggenheim, B. ( 2001; ). Spatial arrangements and associative behavior of species in an in vitro oral biofilm model. Appl Environ Microbiol 67, 1343–1350.[CrossRef]
    [Google Scholar]
  16. Hannig, M. ( 1999; ). Transmission electron microscopy of early plaque formation on dental materials in vivo. Eur J Oral Sci 107, 55–64.[CrossRef]
    [Google Scholar]
  17. Hannig, M. & Hannig, C. ( 2007; ). Does a dental biofilm, free of bacteria, exist in situ? J Parodontol Implantol Orale 26, 187–200.
    [Google Scholar]
  18. Hannig, C. & Hannig, M. ( 2009; ). The oral cavity – a key system to understand substratum-dependent bioadhesion on solid surfaces in man. Clin Oral Investig 13, 123–139.[CrossRef]
    [Google Scholar]
  19. Hannig, M. & Joiner, A. ( 2006; ). The structure, function and properties of the acquired pellicle. Monogr Oral Sci 19, 29–64.
    [Google Scholar]
  20. Hannig, C., Hannig, M., Rehmer, O., Braun, G., Hellwig, E. & Al-Ahmad, A. ( 2007a; ). Fluorescence microscopic visualization and quantification of initial bacterial colonization on enamel in situ. Arch Oral Biol 52, 1048–1056.[CrossRef]
    [Google Scholar]
  21. Hannig, M., Kriener, L., Hoth-Hannig, W. & Schmidt, H. ( 2007b; ). Influence of nano-composite surface coating on biofilm formation in situ. J Nanosci Nanotechnol 7, 4642–4648.
    [Google Scholar]
  22. Hannig, C., Spitzmüller, B., Al-Ahmad, A. & Hannig, M. ( 2008a; ). Effects of Cistus-tea on bacterial colonization and enzyme activities of the in situ pellicle. J Dent 36, 540–545.[CrossRef]
    [Google Scholar]
  23. Hannig, C., Ruggeri, A., Al-Khayer, B., Schmitz, P., Spitzmuller, B., Deimling, D., Huber, K., Hoth-Hannig, W., Bowen, W. H. & Hannig, M. ( 2008b; ). Electron microscopic detection and activity of glucosyltransferase B, C, and D in the in situ formed pellicle. Arch Oral Biol 53, 1003–1010.[CrossRef]
    [Google Scholar]
  24. Hannig, C., Spitzmüller, B. & Hannig, M. ( 2009; ). Characterization of lysozyme activity in the in situ pellicle using a fluorimetric assay. Clin Oral Investig 13, 15–21.[CrossRef]
    [Google Scholar]
  25. Henssge, U., Do, T., Radford, D. R., Gilbert, S. C., Clark, D. & Beighton, D. ( 2009; ). Emended description of Actinomyces naeslundii and descriptions of Actinomyces oris sp. nov. and Actinomyces johnsonii sp. nov., previously identified as Actinomyces naeslundii genospecies 1, 2 and WVA 963. Int J Syst Evol Microbiol 59, 509–516.[CrossRef]
    [Google Scholar]
  26. Li, J., Helmerhorst, E. J., Leone, C. W., Troxler, R. F., Yaskell, T., Haffajee, A. D., Socransky, S. S. & Oppenheim, F. G. ( 2004; ). Identification of early microbial colonizers in human dental biofilm. J Appl Microbiol 97, 1311–1318.[CrossRef]
    [Google Scholar]
  27. Marsh, P. D. & Bradshaw, D. J. ( 1995; ). Dental plaque as a biofilm. J Ind Microbiol 15, 169–175.[CrossRef]
    [Google Scholar]
  28. Nyvad, B. & Fejerskov, O. ( 1987; ). Transmission electron microscopy of early microbial colonization of human enamel and root surfaces in vivo. Scand J Dent Res 95, 297–307.
    [Google Scholar]
  29. Nyvad, B. & Kilian, M. ( 1987; ). Microbiology of the early colonization of human enamel and root surfaces in vivo. Scand J Dent Res 95, 369–380.
    [Google Scholar]
  30. Nyvad, B. & Kilian, M. ( 1990; ). Comparison of the initial streptococcal microflora on dental enamel in caries-active and in caries-inactive individuals. Caries Res 24, 267–272.[CrossRef]
    [Google Scholar]
  31. Palmer, R. J., Jr, Diaz, P. I. & Kolenbrander, P. E. ( 2006; ). Rapid succession within the Veillonella population of a developing human oral biofilm in situ. J Bacteriol 188, 4117–4124.[CrossRef]
    [Google Scholar]
  32. Paster, B. J., Bartoszyk, I. & Dewhirst, F. E. ( 1998; ). Identification of oral streptococci using PCR-based, reverse-capture, checkerboard hybridization. Methods Cell Sci 20, 223–231.[CrossRef]
    [Google Scholar]
  33. Preza, D., Olsen, I., Aas, J. A., Willumsen, T., Grinde, B. & Paster, B. J. ( 2008; ). Bacterial profiles of root caries in elderly patients. J Clin Microbiol 46, 2015–2021.[CrossRef]
    [Google Scholar]
  34. Pruitt, K. M., Caldwell, R. C., Jamieson, A. D. & Taylor, R. E. ( 1969; ). The interaction of salivary proteins with tooth surface. J Dent Res 48, 818–823.[CrossRef]
    [Google Scholar]
  35. Scannapieco, F. A. ( 1994; ). Saliva–bacterium interactions in oral microbial ecology. Crit Rev Oral Biol Med 5, 203–248.
    [Google Scholar]
  36. Scheie, A. A., Eggen, K. H. & Rolla, G. ( 1987; ). Glucosyltransferase activity in human in vivo formed enamel pellicle and in whole saliva. Scand J Dent Res 95, 212–215.
    [Google Scholar]
  37. Schilling, K. M. & Bowen, W. H. ( 1992; ). Glucans synthesized in situ in experimental salivary pellicle function as specific binding sites for Streptococcus mutans. Infect Immun 60, 284–295.
    [Google Scholar]
  38. Schwartz, T., Hoffmann, S. & Obst, U. ( 2003; ). Formation of natural biofilms during chlorine dioxide and u.v. disinfection in a public drinking water distribution system. J Appl Microbiol 95, 591–601.[CrossRef]
    [Google Scholar]
  39. Thurnheer, T., Gmur, R. & Guggenheim, B. ( 2004; ). Multiplex FISH analysis of a six-species bacterial biofilm. J Microbiol Methods 56, 37–47.[CrossRef]
    [Google Scholar]
  40. Vacca-Smith, A. M. & Bowen, W. H. ( 2000; ). In situ studies of pellicle formation on hydroxyapatite discs. Arch Oral Biol 45, 277–291.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.011213-0
Loading
/content/journal/jmm/10.1099/jmm.0.011213-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error