1887

Abstract

The human nasopharynx is a major ecological niche for colonization. Establishment of infection is critically dependent on the persistence of bacteria in the nasopharynx. Various factors are presumed to mediate this persistence and the influence of biofilm formation has been under scrutiny for a long time. In a prospective population-based study, the nasopharyngeal colonization pattern of 250 children <2 years old was traced to gain further insights into the phenomenon. The association between biofilm formation and persistence was delineated by quantitative biofilm assay, while the true nature of biofilm formers was further evaluated by electron microscopy studies. isolates obtained in this study, when analysed by phenotypic and genotypic means, revealed a clonal distribution of strains within the population. The biofilm formation ability of the isolates was found to be significantly associated with bacterial persistence (<0.001). The isolates having biofilm formation ability were found to be 7.1 times more likely to persist in the nasopharynx than non-biofilm formers. This study provides direct evidence indicating the intricate relationship between biofilm formation and the persistence of bacteria. Our results emphasize the need to evaluate the potential for biofilm formation before designing preventive and therapeutic strategies.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.010355-0
2009-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/58/11/1428.html?itemId=/content/journal/jmm/10.1099/jmm.0.010355-0&mimeType=html&fmt=ahah

References

  1. Akopyanz N., Bukanov N. O., Westblom T. U., Kresovich S., Berg D. E. 1992; DNA diversity among clinical isolates of Helicobacter pylori detected by PCR-based RAPD finger printing. Nucleic Acids Res 20:5137–5142 [CrossRef]
    [Google Scholar]
  2. Faden H., Duffy L., Wasielewski R., Wolf J., Krystofik D., Tung Y. 1997; Relationship between nasopharyngeal colonization and development of otitis media in children. J Infect Dis 175:1440–1445 [CrossRef]
    [Google Scholar]
  3. Gomez-De-Leon P., Santos J. I., Caballero J., Gomez D., Espinosa L. E., Moreno I., Pinero D., Cravioto A. 2000; Genomic variability of Haemophilus influenzae isolated from Mexican children determined by using enterobacterial repetitive intergenic consensus sequences and PCR. J Clin Microbiol 38:2504–2511
    [Google Scholar]
  4. Gratten M. 1983; Haemophilus influenzae biotype VII. J Clin Microbiol 18:1015–1016
    [Google Scholar]
  5. Hong W., Mason K. M., Jurcisek J., Novotny L., Bakaletz L. O., Swords W. E. 2007; Phosphorylcholine decreases early inflammation and promotes the establishment of stable biofilm communities of nontypeable Haemophilus influenzae strain 86-028NP in a chinchilla model of otitis media. Infect Immun 75:958–965 [CrossRef]
    [Google Scholar]
  6. Kilian M. 2005; Genus Haemophilus Winslow, Broadhurst, Buchanan, Krumwiede, Rogers and Smith 1917, 561AL. In Bergey's Manual of Systematic Bacteriology . , 2nd edn. vol 2 pp 883–904 Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M. New York: Springer;
  7. Landry R. M., An D., Hupp J. T., Singh P. K., Parsek M. R. 2006; Mucin- Pseudomonas aeruginosa interactions promote biofilm formation and antibiotic resistance. Mol Microbiol 59:142–151 [CrossRef]
    [Google Scholar]
  8. Loos B. G., Bernstein J. M., Dryja D. M., Murphy T. F., Dickinson D. P. 1989; Determination of the epidemiology and transmission of nontypeable Haemophilus influenzae in children with otitis media by comparison of total genomic DNA restriction fingerprints. Infect Immun 57:2751–2757
    [Google Scholar]
  9. Murphy T. F., Brauer A. L., Schiffmacher A. T., Sethi S. 2004; Persistent colonization by Haemophilus influenzae colonization in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 170:266–272 [CrossRef]
    [Google Scholar]
  10. O'Toole G. A., Kolter R. 1998; Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–304 [CrossRef]
    [Google Scholar]
  11. Raymond J., Armand-Lefevre L., Moulin F., Dabernat H., Commeau A., Gendrel D., Berche P. 2001; Nasopharyngeal colonization by Haemophilus influenzae in children living in an orphanage. Pediatr Infect Dis J 20:779–784 [CrossRef]
    [Google Scholar]
  12. Sekhar S., Chakraborti A., Kumar R. 2009; Haemophilus influenzae colonization and its risk factors in children aged <2 years in northern India. Epidemiol Infect 137:156–160 [CrossRef]
    [Google Scholar]
  13. Simpson E. H. 1949; Measurement of diversity. Nature 163:688 [CrossRef]
    [Google Scholar]
  14. Sloan G. P., Love C. F., Sukumar N., Mishra M., Deora R. 2007; The Bordetella Bps polysaccharide is critical for biofilm development in the mouse respiratory tract. J Bacteriol 189:8270–8276 [CrossRef]
    [Google Scholar]
  15. Smith-Vaughan H. C., Leach A. J., Shelby-James T. M., Kemp K., Kemp D. J., Mathews J. D. 1996; Carriage of multiple ribotypes of non-encapsulated Haemophilus influenzae in aboriginal infants with otitis media. Epidemiol Infect 116:177–183 [CrossRef]
    [Google Scholar]
  16. Sottnek F. O., Albritton W. L. 1984; Haemophilus influenzae biotype VIII. J Clin Microbiol 20:815–816
    [Google Scholar]
  17. Spinola S. M., Peacock J., Denny F. W., Smith D. L., Cannon J. G. 1986; Epidemiology of colonization by non-typable Haemophilus influenzae in children: a longitudinal study. J Infect Dis 154:100–109 [CrossRef]
    [Google Scholar]
  18. Stanley N. R., Lazazzera A. 2005; Defining the genetic differences between wild and domestic strains of Bacillus subtilis that effect poly- γ -dl-glutamic acid production and biofilm formation. Mol Microbiol 57:1143–1158 [CrossRef]
    [Google Scholar]
  19. Starner T. D., Zhang N., Kim G., Apicella M. A., McCray P. B. Jr 2006; Haemophilus influenzae forms biofilms on airway epithelia: implications in cystic fibrosis. Am J Respir Crit Care Med 174:213–220 [CrossRef]
    [Google Scholar]
  20. Thurnheer T., Gmur R., Shapiro S., Guggenheim B. 2003; Mass transport of macromolecules within an in vitro model of supragingival plaque. Appl Environ Microbiol 69:1702–1709 [CrossRef]
    [Google Scholar]
  21. Todd J. K. 1984; Bacteriology and clinical relevance of nasopharyngeal and oropharyngeal cultures. Pediatr Infect Dis 3:159–163 [CrossRef]
    [Google Scholar]
  22. Van Ketel R. J., De Wever B., Van Alphen L. 1990; Detection of Haemophilus influenzae in cerebrospinal fluids by polymerase chain reaction DNA amplification. J Med Microbiol 33:271–276 [CrossRef]
    [Google Scholar]
  23. Vives M., Garcia M. E., Saenz P., Mora M. A., Mata L., Sabharwal H., Svanborg C. 1997; Nasopharyngeal colonization in Costa Rican children during the first year of life. Pediatr Infect Dis J 16:852–858 [CrossRef]
    [Google Scholar]
  24. Webster P., Wu S., Webster S., Rich K. A., McDonald K. 2004; Ultrastructural preservation of biofilms formed by non-typeable Haemophilus influenzae . Biofilms 1:165–182 [CrossRef]
    [Google Scholar]
  25. West-Barnette S., Rockel A., Swords W. E. 2006; Biofilm growth increases phosphorylcholine content and decreases potency of nontypeable Haemophilus influenzae endotoxins. Infect Immun 74:1828–1836 [CrossRef]
    [Google Scholar]
  26. Yang L., Haagensen J. A. J., Jelsbak L., Johansen H. K., Sternberg C., Hoiby N., Molin S. 2008; In situ growth rates and biofilm development of Pseudomonas aeruginosa populations in chronic lung infections. J Bacteriol 190:2767–2776 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.010355-0
Loading
/content/journal/jmm/10.1099/jmm.0.010355-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error