1887

Abstract

As antibiotic pressure often triggers bacterial resistance, the use of short-duration therapies is increasingly recommended. The objective of the present study was to evaluate both the clinical efficiency and the impact on oral streptococci of a 3 day versus a 7 day amoxicillin therapy for odontogenic infection requiring tooth extraction. On day 0, patients were randomly assigned to a 3 day or 7 day amoxicillin treatment. The tooth was extracted on day 2 and the post-operative follow-up was carried out on day 9. Oral flora was collected on days 0, 9 and 30, and the susceptibility of the streptococci to amoxicillin was determined. The results showed that treatment with amoxicillin for 3 or 7 days had a similar clinical efficiency, and also induced similar selection of oral streptococci with reduced susceptibility to amoxicillin, suggesting that the selection of strains with reduced susceptibility to amoxicillin is a rapid phenomenon, appearing even with short-duration therapies.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.010207-0
2009-08-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jmm/58/8/1092.html?itemId=/content/journal/jmm/10.1099/jmm.0.010207-0&mimeType=html&fmt=ahah

References

  1. AFSSAPS 2002; Prescription des antibiotiques en odontologie et stomatologie. Antibiotiques 4:246–250
    [Google Scholar]
  2. ANDEM 1996 Prescription d'antibiotiques en odonto-stomatologie. In Recommandations et Références pp 105–159 Paris: Agence Nationale pour le Developpement de l'Evaluation Medicale;
    [Google Scholar]
  3. Andremont A. 2003; Commensal flora may play key role in spreading antibiotic resistance. ASM News 69:601–607
    [Google Scholar]
  4. Barcus V. A., Ghanekar K., Yeo M., Coffey T. J., Dowson C. G. 1995; Genetics of high level penicillin resistance in clinical isolates of Streptococcus pneumoniae . FEMS Microbiol Lett 126:299–303 [CrossRef]
    [Google Scholar]
  5. Bascones Martínez A., Aguirre Urízar J. M., Bermejo Fenoll A., Blanco Carrión A., Gay-Escoda C., González Moles M. A., Gutiérrez Pérez J. L., Jimenez Soriano Y., Liébana Ureña J. other authors 2004; Consensus statement on antimicrobial treatment of odontogenic bacterial infections. Med Oral Patol Oral Cir Bucal 9:369–376
    [Google Scholar]
  6. Beovic B. 2006; The issue of antimicrobial resistance in human medicine. Int J Food Microbiol 112:280–287 [CrossRef]
    [Google Scholar]
  7. Brosius J., Dull T. J., Sleeter D. D., Moller H. F. 1981; Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli . J Mol Biol 148:107–127 [CrossRef]
    [Google Scholar]
  8. Bruckner L., Gigliotti F. 2006; Viridans group streptococcal infections among children with cancer and the importance of emerging antibiotic resistance. Semin Pediatr Infect Dis 17:153–160 [CrossRef]
    [Google Scholar]
  9. Bryskier A. 2002; Viridans group streptococci: a reservoir of resistant bacteria in oral cavities. Clin Microbiol Infect 8:65–69 [CrossRef]
    [Google Scholar]
  10. Canet J. J., Garau J. 2002; Importance of dose duration of β -lactam therapy in nasopharyngeal colonization with resistant pneumococci. J Antimicrob Chemother 50:39–43
    [Google Scholar]
  11. Cerdá Zolezzi P., Millan Laplana L., Rubio Calvo C., Goni Cepero P., Canales Erazo M., Gómez-Lus R. 2004; Molecular basis of resistance to macrolides and other antibiotics in commensal viridans group streptococci and Gemella spp. and transfer of resistance genes to Streptococcus pneumoniae . Antimicrob Agents Chemother 48:3462–3467 [CrossRef]
    [Google Scholar]
  12. Chi F., Nolte O., Bergmann C., Ip M., Hakenbeck R. 2007; Crossing the barrier: evolution and spread of a major class of mosaic pbp2x in Streptococcus pneumoniae , S. mitis and S. oralis . Int J Med Microbiol 297:503–512 [CrossRef]
    [Google Scholar]
  13. Crémieux A.-C., Muller-Serieys C., Panhard X., Delatour F., Tchimichkian M., Mentre F., Andremont A. 2003; Emergence of resistance in normal human aerobic commensal flora during telitromycin and amoxicillin-clavulanic acid treatments. Antimicrob Agents Chemother 47:2030–2035 [CrossRef]
    [Google Scholar]
  14. Dogan B., Schukken Y. H., Santisteban C., Boor K. J. 2005; Distribution of serotypes and antimicrobial resistance genes among Streptococcus agalactiae isolates from bovine and human hosts. J Clin Microbiol 43:5899–5906 [CrossRef]
    [Google Scholar]
  15. Dowson C. G., Hutchison A., Woodford N., Johnson A. P., George R. C., Spratt B. G. 1990; Penicillin-resistant viridans streptococci have obtained altered penicillin-binding protein genes from penicillin-resistant strains of Streptococcus pneumoniae . Proc Natl Acad Sci U S A 87:5858–5862 [CrossRef]
    [Google Scholar]
  16. Dowson C. G., Coffey T. J., Kell C., Whiley R. A. 1993; Evolution of penicillin resistance in Streptococcus pneumoniae : the role of Streptococcus mitis in the formation of a low affinity PBP in Streptococcus pneumoniae . Mol Microbiol 9:635–643 [CrossRef]
    [Google Scholar]
  17. Foucault C., Brouqui P. 2007; How to fight antimicrobial resistance. FEMS Immunol Med Microbiol 49:173–183 [CrossRef]
    [Google Scholar]
  18. Guillemot D., Carbon C., Balkau B., Geslin P., Lecoeur H., Vauzelle-Kervroëdan F., Bouvenot G., Eschwège E. 1998; Low dosage and long treatment duration of β -lactam: risk factors for carriage of penicillin-resistant Streptococcus pneumoniae . JAMA 279:365–370 [CrossRef]
    [Google Scholar]
  19. Hamilton-Miller J. M. T. 2004; Antibiotic resistance from two perspectives: man and microbe. Int J Antimicrob Agents 23:209–212 [CrossRef]
    [Google Scholar]
  20. Jönsson M., Swedberg G. 2006; Macrolide resistance can be transferred by conjugation from viridans streptococci to Streptococcus pyogenes . Int J Antimicrob Agents 28:101–103 [CrossRef]
    [Google Scholar]
  21. Levy S. B. 2001; Antibiotic resistance: consequences of inaction. Clin Infect Dis 33:S124–S129 [CrossRef]
    [Google Scholar]
  22. Livermore D. M. 2005; Minimising antibiotic resistance. Lancet Infect Dis 5:450–459 [CrossRef]
    [Google Scholar]
  23. Livermore D. M. 2007; Introduction: the challenge of multiresistance. Int J Antimicrob Agents 29:S1–S7
    [Google Scholar]
  24. Nakayama A., Takao A. 2003; β -Lactam resistance in Streptococcus mitis isolated from saliva of healthy subjects. J Infect Chemother 9:321–327 [CrossRef]
    [Google Scholar]
  25. Nasrin D., Collignon P. J., Roberts L., Wilson E. J., Pilotto L. S., Douglas R. M. 2002; Effect of β -lactam antibiotic use in children on pneumococcal resistance to penicillin: prospective cohort study. BMJ 324:28–30 [CrossRef]
    [Google Scholar]
  26. Ombandza-Moussa E., Schlegel L., Vekhoff A., Gerbal R., Marie J. P., Bouvet A. 2002; Impact thérapeutique des bactériémies à streptocoues et à entérocoques chez les malades d'hématologie. Pathol Biol 50:169–177 [CrossRef]
    [Google Scholar]
  27. Poveda-Roda R., Bagan J. V., Sanchis-Bielsa J. M., Carbonell-Pastor E. 2007; Antibiotic use in dental practice. A review. Med Oral Patol Oral Cir Bucal 12:E186–E192
    [Google Scholar]
  28. Poyart C., Quesne G., Coulon S., Berche P., Trieu-Cuot P. 1998; Identification of streptococci to species level by sequencing the gene encoding the manganese-dependent superoxide dismutase. J Clin Microbiol 36:41–47
    [Google Scholar]
  29. Prabhu R. M., Piper K. E., Litzow M. R., Steckelberg J. M., Patel R. 2005; Emergence of quinolone resistance among viridans group streptococci isolated from the oropharynx of neutropenic peripheral blood stem cell transplant patients receiving quinolone antimicrobial prophylaxis. Eur J Clin Microbiol Infect Dis 24:832–838 [CrossRef]
    [Google Scholar]
  30. Sauvage E., Kreff F., Terrak M., Ayala J. A., Charlier P. 2008; The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol Rev 32:234–258 [CrossRef]
    [Google Scholar]
  31. Schrag S. J., Peña C., Fernández J., Sánchez J., Gómez V., Pérez E., Feris J. M., Besser R. E. 2001; Effect of short-course, high-dose amoxicillin therapy on resistant pneumococcal carriage. JAMA 286:49–56 [CrossRef]
    [Google Scholar]
  32. Seppälä H., Haanperä M., Al-Juhaish M., Järvinen H., Jalaa J., Huovinen P. 2003; Antimicrobial susceptibility patterns and macrolide resistance genes of viridans group streptococci from normal flora. J Antimicrob Chemother 52:636–644 [CrossRef]
    [Google Scholar]
  33. Stanhope M. J., Walsh S. L., Becker J. A., Miller L. A., Lefébure T., Lang P., Pavinski Bitar P. D., Amrine-Madsen H. 2007; The relative frequency of intraspecific lateral gene transfer of penicillin binding proteins 1a, 2b and 2x, in amoxicillin resistant Streptococcus pneumoniae . Infect Genet Evol 7:520–534 [CrossRef]
    [Google Scholar]
  34. Tomás I., Alvarez M., Limeres J., Otero J. L., Saavedra E., López-Meléndez C., Diz P. 2004; In vitro activity of moxifloxacin compared to other antimicrobials against streptococci isolated from iatrogenic oral bacteremia in Spain. Oral Microbiol Immunol 19:331–335 [CrossRef]
    [Google Scholar]
  35. Wang H. H., Manuzon M., Lehman M., Wan K., Luo H., Wittum T. E., Yousef A., Bakaletz L. O. 2006; Food commensal microbes as a potentially important avenue in transmitting antibiotic resistance genes. FEMS Microbiol Lett 254:226–231 [CrossRef]
    [Google Scholar]
  36. Zapun A., Contreras-Martel C., Vernet T. 2008; Penicillin-binding proteins and β -lactam resistance. FEMS Microbiol Rev 32:361–385 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.010207-0
Loading
/content/journal/jmm/10.1099/jmm.0.010207-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error