signals through Toll-like receptor (TLR) 2 and not through TLR4 Free

Abstract

Although it is desirable to identify the interactions between endotoxin/LPS and the innate immune mechanism, it is often not possible to isolate these interactions from other cell wall-related structures of protein or polysaccharide origin. There is no universally accepted method to extract different LPSs from different bacteria, and their natural state will be influenced by their interactions with the associated molecules in the bacterial outer membrane. It is now believed that Toll-like receptor (TLR) 4 is the main signal transducer of classical LPS (i.e. LPS), while TLR2 is used by certain non-classical LPSs. There are contradictory reports as to whether LPS, a non-classical LPS, signals primarily through TLR2 or TLR4. This study was designed to address this problem. Different non-purified and purified LPSs extracted by different methods together with different heat-killed, whole-cell populations of were used to elucidate the TLR specificity. All of these preparations showed a significant signalling specificity for TLR2 but not for TLR4. This indicates that changing the extraction methods, with or without applying a repurification procedure, and varying the cell populations do not alter the TLR specificity of LPS.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.009936-0
2009-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/58/8/1015.html?itemId=/content/journal/jmm/10.1099/jmm.0.009936-0&mimeType=html&fmt=ahah

References

  1. Alexander C., Rietschel E. T. 2001; Bacterial lipopolysaccharides and innate immunity. J Endotoxin Res 7:167–202
    [Google Scholar]
  2. Benoit R., Rowe S., Watkins S. C., Boyle P., Garrett M., Alber S., Wiener J., Rowe M. I., Ford H. R. 1998; Pure endotoxin does not pass across the intestinal epithelium in vitro. Shock 10:43–48 [CrossRef]
    [Google Scholar]
  3. Cerdeno-Tarraga A. M., Patrick S., Crossman L. C., Blakely G., Abratt V., Lennard N., Poxton I., Duerden B., Harris B. other authors 2005; Extensive DNA inversions in the B. fragilis genome control variable gene expression. Science 307:1463–1465 [CrossRef]
    [Google Scholar]
  4. Delahooke D. M., Barclay G. R., Poxton I. R. 1995; A re-appraisal of the biological activity of bacteroides LPS. J Med Microbiol 42:102–112 [CrossRef]
    [Google Scholar]
  5. Eidhin D. N., Mouton C. 1993; A rapid method for preparation of rough and smooth lipopolysaccharide from Bacteroides , Porphyromonas and Prevotella . FEMS Microbiol Lett 110:133–138 [CrossRef]
    [Google Scholar]
  6. Erridge C., Pridmore A., Eley A., Stewart J., Poxton I. R. 2004; Lipopolysaccharides of Bacteroides fragilis , Chlamydia trachomatis and Pseudomonas aeruginosa signal via Toll-like receptor 2. J Med Microbiol 53:735–740 [CrossRef]
    [Google Scholar]
  7. Erridge C., Spickett C. M., Webb D. J. 2007; Non-enterobacterial endotoxins stimulate human coronary artery but not venous endothelial cell activation via Toll-like receptor 2. Cardiovasc Res 73:181–189 [CrossRef]
    [Google Scholar]
  8. Faure E., Equils O., Sieling P. A., Thomas L., Zhang F. X., Kirschning C. J., Polentarutti N., Muzio M., Arditi M. 2000; Bacterial lipopolysaccharide activates NF-kappaB through toll-like receptor 4 (TLR-4) in cultured human dermal endothelial cells. Differential expression of TLR-4 and TLR-2 in endothelial cells. J Biol Chem 275:11058–11063 [CrossRef]
    [Google Scholar]
  9. Fukushi K., Anacker R. L., Haskins W. T., Landy M., Milner K. C., Ribi E. 1964; Extraction and purification of endotoxin from Enterobacteriaceae: a comparison of selected methods and sources. J Bacteriol 87:391–400
    [Google Scholar]
  10. Galanos C., Luderitz O., Westphal O. 1969; A new method for the extraction of R lipopolysaccharides. Eur J Biochem 9:245–249 [CrossRef]
    [Google Scholar]
  11. Gibson F. C. III, Tzianabos A. O., Onderdonk A. B. 1996; The capsular polysaccharide complex of Bacteroides fragilis induces cytokine production from human and murine phagocytic cells. Infect Immun 64:1065–1069
    [Google Scholar]
  12. Hancock I. C., Poxton I. R. 1988 Bacterial Cell Surface Techniques Chichester: Wiley;
    [Google Scholar]
  13. Hellman J., Tehan M. M., Warren H. S. 2003; Murein lipoprotein, peptidoglycan-associated lipoprotein, and outer membrane protein A are present in purified rough and smooth lipopolysaccharides. J Infect Dis 188:286–289 [CrossRef]
    [Google Scholar]
  14. Hirschfeld M., Ma Y., Weis J. H., Vogel S. N., Weis J. J. 2000; Cutting edge: repurification of lipopolysaccharide eliminates signaling through both human and murine Toll-like receptor 2. J Immunol 165:618–622 [CrossRef]
    [Google Scholar]
  15. Hofstad T., Sveen K., Dahlen G. 1977; Chemical composition, serological reactivity and endotoxicity of lipopolysaccharides extracted in different ways from Bacteroides fragilis , Bacteroides melaninogenicus and Bacteroides oralis . Acta Pathol Microbiol Scand [B] 85:262–270
    [Google Scholar]
  16. Holbrook W. P., Duerden B. I., Deacon A. G. 1977; The classification of Bacteroides melaninogenicus and related species. J Appl Bacteriol 42:259–273 [CrossRef]
    [Google Scholar]
  17. Hoshino K., Takeuchi O., Kawai T., Sanjo H., Ogawa T., Takeda Y., Takeda K., Akira S. 1999; Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 162:3749–3752
    [Google Scholar]
  18. Kutuzova G. D., Albrecht R. M., Erickson C. M., Qureshi N. 2001; Diphosphoryl lipid A from Rhodobacter sphaeroides blocks the binding and internalization of lipopolysaccharide in RAW 264.7 cells. J Immunol 167:482–489 [CrossRef]
    [Google Scholar]
  19. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  20. Lee H. K., Lee J., Tobias P. S. 2002; Two lipoproteins extracted from Escherichia coli K-12 LCD25 lipopolysaccharide are the major components responsible for Toll-like receptor 2-mediated signaling. J Immunol 168:4012–4017 [CrossRef]
    [Google Scholar]
  21. Lien E., Means T. K., Heine H., Yoshimura A., Kusumoto S., Fukase K., Fenton M. J., Oikawa M., Qureshi N. other authors 2000; Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide. J Clin Invest 105:497–504 [CrossRef]
    [Google Scholar]
  22. Lindberg A. A., Weintraub A., Zahringer U., Rietschel E. T. 1990; Structure-activity relationships in lipopolysaccharides of Bacteroides fragilis . Rev Infect Dis 12:S133–S141 [CrossRef]
    [Google Scholar]
  23. Mancuso G., Midiri A., Biondo C., Beninati C., Gambuzza M., Macri D., Bellantoni A., Weintraub A., Espevik T., Teti G. 2005; Bacteroides fragilis -derived lipopolysaccharide produces cell activation and lethal toxicity via Toll-like receptor 4. Infect Immun 73:5620–5627 [CrossRef]
    [Google Scholar]
  24. Manthey C. L., Vogel S. N. 1994; Elimination of trace endotoxin protein from rough chemotype LPS. J Endotoxin Res 1:84–91
    [Google Scholar]
  25. Marsik C., Mayr F., Cardona F., Derhaschnig U., Wagner O. F., Jilma B. 2003; Endotoxaemia modulates Toll-like receptors on leucocytes in humans. Br J Haematol 121:653–656 [CrossRef]
    [Google Scholar]
  26. Morrison D. C., Leive L. 1975; Fractions of lipopolysaccharide from Escherichia coli O111 : B4 prepared by two extraction procedures. J Biol Chem 250:2911–2919
    [Google Scholar]
  27. Morrison D. C., Betz S. J., Jacobs D. M. 1976; Isolation of a lipid A bound polypeptide responsible for “LPS-initiated” mitogenesis of C3H/HeJ spleen cells. J Exp Med 144:840–846 [CrossRef]
    [Google Scholar]
  28. Morrison D. C., Vukajlovich S. W., Ryan J. L., Levin J. 1987; Structural requirements for gelation of the Limulus amebocyte lysate by endotoxin. Prog Clin Biol Res 231:55–73
    [Google Scholar]
  29. Muroi M., Ohnishi T., Azumi-Mayuzumi S., Tanamoto K. 2003; Lipopolysaccharide-mimetic activities of a Toll-like receptor 2-stimulatory substance(s) in enterobacterial lipopolysaccharide preparations. Infect Immun 71:3221–3226 [CrossRef]
    [Google Scholar]
  30. Nakagawa Y., Maeda H., Murai T. 2002; Evaluation of the in vitro pyrogen test system based on proinflammatory cytokine release from human monocytes: comparison with a human whole blood culture test system and with the rabbit pyrogen test. Clin Diagn Lab Immunol 9:588–597
    [Google Scholar]
  31. Patrick S. 2002; Bacteroides . In Molecular Medical Microbiology pp 1921–1948 Edited by Sussman M. London: Academic Press;
    [Google Scholar]
  32. Patrick S., Reid J. H., Coffey A. 1986; Capsulation of in vitro and in vivo grown Bacteroides species. J Gen Microbiol 132:1099–1109
    [Google Scholar]
  33. Patrick S., Gilpin D., Stevenson L. 1999; Detection of intrastrain antigenic variation of Bacteroides fragilis surface polysaccharides by monoclonal antibody labelling. Infect Immun 67:4346–4351
    [Google Scholar]
  34. Patrick S., Parkhill J., McCoy L. J., Lennard N., Larkin M. J., Collins M., Sczaniecka M., Blakely G. 2003; Multiple inverted DNA repeats of Bacteroides fragilis that control polysaccharide antigenic variation are similar to the hin region inverted repeats of Salmonella typhimurium . Microbiology 149:915–924 [CrossRef]
    [Google Scholar]
  35. Patrick S., Houston S., Thacker Z., Blakely G. 2009; Mutational analysis of genes implicated in LPS and capsular polysaccharide biosynthesis in the opportunistic pathogen Bacteroides fragilis . Microbiology 155:1039–1049 [CrossRef]
    [Google Scholar]
  36. Poltorak A., He X., Smirnova I., Liu M. Y., Van Huffel C., Du X., Birdwell D., Alejos E., Silva M. other authors 1998; Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085–2088 [CrossRef]
    [Google Scholar]
  37. Poltorak A., Ricciardi-Castagnoli P., Citterio S., Beutler B. 2000; Physical contact between lipopolysaccharide and Toll-like receptor 4 revealed by genetic complementation. Proc Natl Acad Sci U S A 97:2163–2167 [CrossRef]
    [Google Scholar]
  38. Poxton I. R., Brown R. 1979; Sodium dodecyl sulphate–polyacrylamide gel electrophoresis of cell-surface proteins as an aid to the identification of the Bacteroides fragilis group. J Gen Microbiol 112:211–217 [CrossRef]
    [Google Scholar]
  39. Poxton I. R., Edmond D. M. 1995; Biological activity of Bacteroides lipopolysaccharide – reappraisal. Clin Infect Dis 20:S149–S153 [CrossRef]
    [Google Scholar]
  40. Poxton I. R., Brown R., Sawyerr A., Ferguson A. 1997; Mucosa-associated bacterial flora of the human colon. J Med Microbiol 46:85–91 [CrossRef]
    [Google Scholar]
  41. Qureshi N., Takayama K., Ribi E. 1982; Purification and structural determination of nontoxic lipid A obtained from the lipopolysaccharide of Salmonella typhimurium . J Biol Chem 257:11808–11815
    [Google Scholar]
  42. Reid J. H., Patrick S., Tabaqchali S. 1987; Immunochemical characterization of a polysaccharide antigen of Bacteroides fragilis with an IgM monoclonal antibody. J Gen Microbiol 133:171–179
    [Google Scholar]
  43. Richardson R. P., Rhyne C. D., Fong Y., Hesse D. G., Tracey K. J., Marano M. A., Lowry S. F., Antonacci A. C., Calvano S. E. 1989; Peripheral blood leukocyte kinetics following in vivo lipopolysaccharide (LPS) administration to normal human subjects. Influence of elicited hormones and cytokines. Ann Surg 210:239–245 [CrossRef]
    [Google Scholar]
  44. Rudbach J. A., Proctor R. A. 2001; A lesson from Paris: use defined endotoxin preparations. Endotoxin Newsl 11:2
    [Google Scholar]
  45. Seydel U., Hawkins L., Schromm A. B., Heine H., Scheel O., Koch M. H., Brandenburg K. 2003; The generalized endotoxic principle. Eur J Immunol 33:1586–1592 [CrossRef]
    [Google Scholar]
  46. Tapping R. I., Akashi S., Miyake K., Godowski P. J., Tobias P. S. 2000; Toll-like receptor 4, but not Toll-like receptor 2, is a signaling receptor for Escherichia and Salmonella lipopolysaccharides. J Immunol 165:5780–5787 [CrossRef]
    [Google Scholar]
  47. Tsai C. M., Frasch C. E. 1982; A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem 119:115–119 [CrossRef]
    [Google Scholar]
  48. Uchida K., Mizushima S. 1987; A simple method for the isolation of lipopolysaccharides from Pseudomonas aeruginosa and some other bacterial strain. Agric Biol Chem 51:3107–3114 [CrossRef]
    [Google Scholar]
  49. Van Tassell R. L., Wilkins T. D. 1978; Isolation of auxotrophs of Bacteroides fragilis . Can J Microbiol 24:1619–1621 [CrossRef]
    [Google Scholar]
  50. Vukajlovich S. W., Morrison D. C. 1985; Activation of murine spleen cells by lipid A: negative modulation of lipid A mitogenic activity by O-antigen polysaccharide. J Immunol 135:2546–2550
    [Google Scholar]
  51. Weintraub A., Zahringer U., Lindberg A. A. 1985; Structural studies of the polysaccharide part of the cell wall lipopolysaccharide from Bacteroides fragilis NCTC 9343. Eur J Biochem 151:657–661 [CrossRef]
    [Google Scholar]
  52. Weintraub A., Zahringer U., Wollenweber H. W., Seydel U., Rietschel E. T. 1989; Structural characterization of the lipid A component of Bacteroides fragilis strain NCTC 9343 lipopolysaccharide. Eur J Biochem 183:425–431 [CrossRef]
    [Google Scholar]
  53. Westphal A., Luderitz O. 1953; Chemical and biological analysis of highly purified bacterial polysaccharides. Dtsch Med Wochenschr 78:17–19 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.009936-0
Loading
/content/journal/jmm/10.1099/jmm.0.009936-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed