1887

Abstract

Biofilms on catheters are responsible for catheter-related bloodstream infections (CRBSIs), which cause significant mortality and morbidity. Antimicrobial catheter-lock solutions may salvage precious catheters by eradicating biofilms. and are frequently isolated organisms in CRBSIs. We evaluated -acetylcysteine (NAC), EDTA, ethanol and talactoferrin (TLF) individually and in combination with antibiotics against biofilms of . and to identify effective catheter-lock solutions. Minimum biofilm-eradication concentrations causing 50 % inhibition (MBEC) for EDTA, NAC, ethanol and TLF were determined against biofilms of and formed on 96-well microtitre plates. Biomass, mean thickness and viability of and biofilms were evaluated after exposure to MBEC concentrations of EDTA, NAC, ethanol and TLF. Antimicrobial combinations of EDTA, NAC, ethanol and TLF with nafcillin, vancomycin, fluconazole and amphotericin B were evaluated systematically for synergy using combination indices (CIs). EDTA, NAC, ethanol and TLF significantly reduced biofilm biomass and mean thickness (<0.05, one-way ANOVA) of monomicrobial and polymicrobial biofilms as evaluated by confocal microscopy. CIs evaluated at equipotency ratios, and 50, 75 and 90 % effects, showed that EDTA, NAC, ethanol and TLF were synergistic (CI <1) with antibiotics (with few exceptions) against biofilms of and . EDTA, NAC, ethanol and TLF inhibit monomicrobial and polymicrobial biofilms of neonatal strains of and , and are synergistic with antibiotics. Catheter-lock solutions of EDTA, NAC and ethanol alone or in combination with antibiotics may be used to salvage infected catheters, which will directly impact on patient morbidity and health-care costs.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.009761-0
2009-07-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/58/7/936.html?itemId=/content/journal/jmm/10.1099/jmm.0.009761-0&mimeType=html&fmt=ahah

References

  1. Alem, M. A. & Douglas, L. J. ( 2005; ). Prostaglandin production during growth of Candida albicans biofilms. J Med Microbiol 54, 1001–1005.[CrossRef]
    [Google Scholar]
  2. Almuneef, M. A., Memish, Z. A., Balkhy, H. H., Hijazi, O., Cunningham, G. & Francis, C. ( 2006; ). Rate, risk factors and outcomes of catheter-related bloodstream infection in a paediatric intensive care unit in Saudi Arabia. J Hosp Infect 62, 207–213.[CrossRef]
    [Google Scholar]
  3. Anaissie, E., Samonis, G., Kontoyiannis, D., Costerton, J., Sabharwal, U., Bodey, G. & Raad, I. ( 1995; ). Role of catheter colonization and infrequent hematogenous seeding in catheter-related infections. Eur J Clin Microbiol Infect Dis 14, 134–137.[CrossRef]
    [Google Scholar]
  4. Andes, D., Nett, J., Oschel, P., Albrecht, R., Marchillo, K. & Pitula, A. ( 2004; ). Development and characterization of an in vivo central venous catheter Candida albicans biofilm model. Infect Immun 72, 6023–6031.[CrossRef]
    [Google Scholar]
  5. Bachmann, S. P., Ramage, G., VandeWalle, K., Patterson, T. F., Wickes, B. L. & Lopez-Ribot, J. L. ( 2003; ). Antifungal combinations against Candida albicans biofilms in vitro. Antimicrob Agents Chemother 47, 3657–3659.[CrossRef]
    [Google Scholar]
  6. Broom, J., Woods, M., Allworth, A., McCarthy, J., Faoagali, J., Macdonald, S. & Pithie, A. ( 2008; ). Ethanol lock therapy to treat tunnelled central venous catheter-associated blood stream infections: results from a prospective trial. Scand J Infect Dis 40, 399–406.[CrossRef]
    [Google Scholar]
  7. Cerca, N., Pier, G. B., Vilanova, M., Oliveira, R. & Azeredo, J. ( 2004; ). Influence of batch or fed-batch growth on Staphylococcus epidermidis biofilm formation. Lett Appl Microbiol 39, 420–424.[CrossRef]
    [Google Scholar]
  8. Cerca, N., Martins, S., Cerca, F., Jefferson, K. K., Pier, G. B., Oliveira, R. & Azeredo, J. ( 2005; ). Comparative assessment of antibiotic susceptibility of coagulase-negative staphylococci in biofilm versus planktonic culture as assessed by bacterial enumeration or rapid XTT colorimetry. J Antimicrob Chemother 56, 331–336.[CrossRef]
    [Google Scholar]
  9. Chambers, S. T., Peddie, B. & Pithie, A. ( 2006; ). Ethanol disinfection of plastic-adherent micro-organisms. J Hosp Infect 63, 193–196.[CrossRef]
    [Google Scholar]
  10. Chou, T. C. ( 2006; ). Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 58, 621–681.[CrossRef]
    [Google Scholar]
  11. Chou, T. C. & Talalay, P. ( 1984; ). Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22, 27–55.[CrossRef]
    [Google Scholar]
  12. CLSI ( 2002; ). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, approved standard, 2nd edn, M27–A2. Wayne, PA: CLSI.
  13. CLSI ( 2003; ). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, approved standard, 6th edn, M7–A7. Wayne, PA: CLSI.
  14. CLSI ( 2007; ). Performance Standards for Antimicrobial Susceptibility Testing, 17th informational supplement, M100–S17.27. Wayne, PA: CLSI.
  15. Console, G., Calabro, C., Nardulli, P., Digiuseppe, F., Rucci, A., Russo, P. & Geppetti, P. ( 2007; ). Clinical and economic effects of central venous catheters on oncology patient care. J Chemother 19, 309–314.[CrossRef]
    [Google Scholar]
  16. Crnich, C. J., Halfmann, J. A., Crone, W. C. & Maki, D. G. ( 2005; ). The effects of prolonged ethanol exposure on the mechanical properties of polyurethane and silicone catheters used for intravascular access. Infect Control Hosp Epidemiol 26, 708–714.[CrossRef]
    [Google Scholar]
  17. Dimick, J. B., Pelz, R. K., Consunji, R., Swoboda, S. M., Hendrix, C. W. & Lipsett, P. A. ( 2001; ). Increased resource use associated with catheter-related bloodstream infection in the surgical intensive care unit. Arch Surg 136, 229–234.[CrossRef]
    [Google Scholar]
  18. Domingue, G., Ellis, B., Dasgupta, M. & Costerton, J. W. ( 1994; ). Testing antimicrobial susceptibilities of adherent bacteria by a method that incorporates guidelines of the National Committee for Clinical Laboratory Standards. J Clin Microbiol 32, 2564–2568.
    [Google Scholar]
  19. Donelli, G. ( 2006; ). Vascular catheter-related infection and sepsis. Surg Infect (Larchmt) 7 (Suppl. 2), S25–S27.
    [Google Scholar]
  20. Faix, R. G. & Kovarik, S. M. ( 1989; ). Polymicrobial sepsis among intensive care nursery infants. J Perinatol 9, 131–136.
    [Google Scholar]
  21. Furuya, E. Y. & Lowy, F. D. ( 2003; ). Antimicrobial strategies for the prevention and treatment of cardiovascular infections. Curr Opin Pharmacol 3, 464–469.[CrossRef]
    [Google Scholar]
  22. Gandelman, G., Frishman, W. H., Wiese, C., Green-Gastwirth, V., Hong, S., Aronow, W. S. & Horowitz, H. W. ( 2007; ). Intravascular device infections: epidemiology, diagnosis, and management. Cardiol Rev 15, 13–23.[CrossRef]
    [Google Scholar]
  23. Gil, M. L., Casanova, M. & Martinez, J. P. ( 1994; ). Changes in the cell wall glycoprotein composition of Candida albicans associated to the inhibition of germ tube formation by EDTA. Arch Microbiol 161, 489–494.[CrossRef]
    [Google Scholar]
  24. Gordon, C. A., Hodges, N. A. & Marriott, C. ( 1991; ). Use of slime dispersants to promote antibiotic penetration through the extracellular polysaccharide of mucoid Pseudomonas aeruginosa. Antimicrob Agents Chemother 35, 1258–1260.[CrossRef]
    [Google Scholar]
  25. Hawser, S. P., Norris, H., Jessup, C. J. & Ghannoum, M. A. ( 1998; ). Comparison of a 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide (XTT) colorimetric method with the standardized National Committee for Clinical Laboratory Standards method of testing clinical yeast isolates for susceptibility to antifungal agents. J Clin Microbiol 36, 1450–1452.
    [Google Scholar]
  26. Heydorn, A., Nielsen, A. T., Hentzer, M., Sternberg, C., Givskov, M., Ersboll, B. K. & Molin, S. ( 2000; ). Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 146, 2395–2407.
    [Google Scholar]
  27. Karlowicz, M. G., Hashimoto, L. N., Kelly, R. E., Jr & Buescher, E. S. ( 2000; ). Should central venous catheters be removed as soon as candidemia is detected in neonates? Pediatrics 106, E63 [CrossRef]
    [Google Scholar]
  28. Kaufman, D. & Fairchild, K. D. ( 2004; ). Clinical microbiology of bacterial and fungal sepsis in very-low-birth-weight infants. Clin Microbiol Rev 17, 638–680.[CrossRef]
    [Google Scholar]
  29. Leitch, E. C. & Willcox, M. D. ( 1999a; ). Lactoferrin increases the susceptibility of S. epidermidis biofilms to lysozyme and vancomycin. Curr Eye Res 19, 12–19.[CrossRef]
    [Google Scholar]
  30. Leitch, E. C. & Willcox, M. D. ( 1999b; ). Elucidation of the antistaphylococcal action of lactoferrin and lysozyme. J Med Microbiol 48, 867–871.[CrossRef]
    [Google Scholar]
  31. Levy, S. B. ( 1998; ). Antimicrobial resistance: bacteria on the defence. Resistance stems from misguided efforts to try to sterilise our environment. BMJ 317, 612–613.[CrossRef]
    [Google Scholar]
  32. Marchese, A., Bozzolasco, M., Gualco, L., Debbia, E. A., Schito, G. C. & Schito, A. M. ( 2003; ). Effect of fosfomycin alone and in combination with N-acetylcysteine on E. coli biofilms. Int J Antimicrob Agents 22 (Suppl. 2), 95–100.[CrossRef]
    [Google Scholar]
  33. Martinez-Irujo, J. J., Villahermosa, M. L., Alberdi, E. & Santiago, E. ( 1996; ). A checkerboard method to evaluate interactions between drugs. Biochem Pharmacol 51, 635–644.[CrossRef]
    [Google Scholar]
  34. McKenzie, F. E. ( 2006; ). Case mortality in polymicrobial bloodstream infections. J Clin Epidemiol 59, 760–761.[CrossRef]
    [Google Scholar]
  35. Mouw, E., Chessman, K., Lesher, A. & Tagge, E. ( 2008; ). Use of an ethanol lock to prevent catheter-related infections in children with short bowel syndrome. J Pediatr Surg 43, 1025–1029.[CrossRef]
    [Google Scholar]
  36. Noyola, D. E., Fernandez, M., Moylett, E. H. & Baker, C. J. ( 2001; ). Ophthalmologic, visceral, and cardiac involvement in neonates with candidemia. Clin Infect Dis 32, 1018–1023.[CrossRef]
    [Google Scholar]
  37. O'Grady, N. P., Alexander, M., Dellinger, E. P., Gerberding, J. L., Heard, S. O., Maki, D. G., Masur, H., McCormick, R. D., Mermel, L. A. & other authors ( 2002; ). Guidelines for the prevention of intravascular catheter-related infections. Am J Infect Control 30, 476–489.[CrossRef]
    [Google Scholar]
  38. Olofsson, A. C., Hermansson, M. & Elwing, H. ( 2003; ). N-Acetyl-L-cysteine affects growth, extracellular polysaccharide production, and bacterial biofilm formation on solid surfaces. Appl Environ Microbiol 69, 4814–4822.[CrossRef]
    [Google Scholar]
  39. Ozerdem Akpolat, N., Elci, S., Atmaca, S., Akbayin, H. & Gul, K. ( 2003; ). The effects of magnesium, calcium and EDTA on slime production by Staphylococcus epidermidis strains. Folia Microbiol (Praha) 48, 649–653.[CrossRef]
    [Google Scholar]
  40. Pawar, M., Mehta, Y., Kapoor, P., Sharma, J., Gupta, A. & Trehan, N. ( 2004; ). Central venous catheter-related blood stream infections: incidence, risk factors, outcome, and associated pathogens. J Cardiothorac Vasc Anesth 18, 304–308.[CrossRef]
    [Google Scholar]
  41. Percival, S. L., Kite, P., Eastwood, K., Murga, R., Carr, J., Arduino, M. J. & Donlan, R. M. ( 2005; ). Tetrasodium EDTA as a novel central venous catheter lock solution against biofilm. Infect Control Hosp Epidemiol 26, 515–519.[CrossRef]
    [Google Scholar]
  42. Perez-Giraldo, C., Rodriguez-Benito, A., Moran, F. J., Hurtado, C., Blanco, M. T. & Gomez-Garcia, A. C. ( 1997; ). Influence of N-acetylcysteine on the formation of biofilm by Staphylococcus epidermidis. J Antimicrob Chemother 39, 643–646.[CrossRef]
    [Google Scholar]
  43. Raad, I. I. & Hanna, H. A. ( 2002; ). Intravascular catheter-related infections: new horizons and recent advances. Arch Intern Med 162, 871–878.[CrossRef]
    [Google Scholar]
  44. Raad, I., Chatzinikolaou, I., Chaiban, G., Hanna, H., Hachem, R., Dvorak, T., Cook, G. & Costerton, W. ( 2003; ). In vitro and ex vivo activities of minocycline and EDTA against microorganisms embedded in biofilm on catheter surfaces. Antimicrob Agents Chemother 47, 3580–3585.[CrossRef]
    [Google Scholar]
  45. Raad, I., Hanna, H., Dvorak, T., Chaiban, G. & Hachem, R. ( 2007a; ). Optimal antimicrobial catheter lock solution, using different combinations of minocycline, EDTA, and 25-percent ethanol, rapidly eradicates organisms embedded in biofilm. Antimicrob Agents Chemother 51, 78–83.[CrossRef]
    [Google Scholar]
  46. Raad, I., Hanna, H., Jiang, Y., Dvorak, T., Reitzel, R., Chaiban, G., Sherertz, R. & Hachem, R. ( 2007b; ). Comparative activities of daptomycin, linezolid, and tigecycline against catheter-related methicillin-resistant Staphylococcus bacteremic isolates embedded in biofilm. Antimicrob Agents Chemother 51, 1656–1660.[CrossRef]
    [Google Scholar]
  47. Ramage, G. & Lopez-Ribot, J. L. ( 2005; ). Techniques for antifungal susceptibility testing of Candida albicans biofilms. Methods Mol Med 118, 71–79.
    [Google Scholar]
  48. Ramage, G., Wickes, B. L. & Lopez-Ribot, J. L. ( 2007; ). Inhibition on Candida albicans biofilm formation using divalent cation chelators (EDTA). Mycopathologia 164, 301–306.[CrossRef]
    [Google Scholar]
  49. Rello, J., Ochagavia, A., Sabanes, E., Roque, M., Mariscal, D., Reynaga, E. & Valles, J. ( 2000; ). Evaluation of outcome of intravenous catheter-related infections in critically ill patients. Am J Respir Crit Care Med 162, 1027–1030.[CrossRef]
    [Google Scholar]
  50. Root, J. L., McIntyre, O. R., Jacobs, N. J. & Daghlian, C. P. ( 1988; ). Inhibitory effect of disodium EDTA upon the growth of Staphylococcus epidermidis in vitro: relation to infection prophylaxis of Hickman catheters. Antimicrob Agents Chemother 32, 1627–1631.[CrossRef]
    [Google Scholar]
  51. Schinabeck, M. K., Long, L. A., Hossain, M. A., Chandra, J., Mukherjee, P. K., Mohamed, S. & Ghannoum, M. A. ( 2004; ). Rabbit model of Candida albicans biofilm infection: liposomal amphotericin B antifungal lock therapy. Antimicrob Agents Chemother 48, 1727–1732.[CrossRef]
    [Google Scholar]
  52. Singh, P. K. ( 2004; ). Iron sequestration by human lactoferrin stimulates P. aeruginosa surface motility and blocks biofilm formation. Biometals 17, 267–270.[CrossRef]
    [Google Scholar]
  53. Singh, P. K., Parsek, M. R., Greenberg, E. P. & Welsh, M. J. ( 2002; ). A component of innate immunity prevents bacterial biofilm development. Nature 417, 552–555.[CrossRef]
    [Google Scholar]
  54. Stoodley, P., Wilson, S., Hall-Stoodley, L., Boyle, J. D., Lappin-Scott, H. M. & Costerton, J. W. ( 2001; ). Growth and detachment of cell clusters from mature mixed-species biofilms. Appl Environ Microbiol 67, 5608–5613.[CrossRef]
    [Google Scholar]
  55. Valenti, P. & Antonini, G. ( 2005; ). Lactoferrin: an important host defence against microbial and viral attack. Cell Mol Life Sci 62, 2576–2587.[CrossRef]
    [Google Scholar]
  56. Venkatesh, M. P. & Liang, R. ( 2008; ). Human recombinant lactoferrin is synergistic with antimicrobials commonly used in neonatal practice against coagulase-negative staphylococci and Candida albicans causing neonatal sepsis. J Med Microbiol 57, 1113–1121.[CrossRef]
    [Google Scholar]
  57. Xu, Y. Y., Samaranayake, Y. H., Samaranayake, L. P. & Nikawa, H. ( 1999; ). In vitro susceptibility of Candida species to lactoferrin. Med Mycol 37, 35–41.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.009761-0
Loading
/content/journal/jmm/10.1099/jmm.0.009761-0
Loading

Data & Media loading...

Supplements

[ PDF file] (42 KB)

PDF

Viability of monomicrobial biofilm sonicates after exposure to EDTA, NAC, ethanol and TLF. Biofilms of strains (ATCC 55133, H100 and S101) grown in 96-well microtitre plates were exposed to EDTA and NAC at 16 mg ml , TLF at 8 mg ml , ethanol at 12.5% or growth media (control). At 0, 24, 48 and 72 h, cells from selected wells were sonicated and plated as serial dilutions. log10 c.f.u. ml values are presented as the mean ± SEM. Viability of ATCC 55133 (a), H100 (b) and S101 (c) was significantly decreased by EDTA and NAC (*P<0.05, two-way ANOVA). Ethanol and TLF were less consistent in reducing viability. Strain S101 was susceptible to all agents at the time points tested. [ PDF file] (30 KB)

PDF

Viability of monomicrobial biofilm sonicates after exposure to EDTA, NAC, ethanol and TLF. Biofilms of strains (ATCC 32354 and ATCC MYA 4441) grown in 96-well microtitre plates were exposed to EDTA and NAC at 16 mg ml , TLF at 8 mg ml , ethanol at 12.5% or growth media (control). At 0, 24, 48 and 72 h, cells from selected wells were sonicated and plated as serial dilutions. log10 c.f.u. ml values are presented as the mean ± SEM. EDTA, NAC and ethanol significantly reduced viability of both strains of at 24, 48 and 72 h (*P<0.05, two-way ANOVA). TLF did not consistently reduce viability in either strain of . [ PDF file] (28 KB)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error