Inhibitory effects of subsp. on lipopolysaccharide-induced inflammation and epithelial barrier dysfunction in a co-culture model using Caco-2/peripheral blood mononuclear cells Free

Abstract

In this study, we investigated the anti-inflammatory and reinforcing barrier effects of subsp. (Lcr35) on Caco-2 intestinal epithelial cells already exposed to LPS. Using the Transwell co-culture model, LPS was apically added to polarized Caco-2 cells co-cultured with peripheral blood mononuclear cells (PBMCs) in the basolateral compartment. LPS-stimulated Caco-2 cells were incubated with Lcr35 for 1, 6, 24 or 48 h. Apical inoculation of Lcr35 after 48 h significantly inhibited the basolateral secretion of interleukin-8 (IL-8) in the Caco-2/PBMC co-culture. The PCR analysis showed that Lcr35 significantly downregulated mRNA expression of monocyte chemoattractant protein 1 (MCP-1) (<0.05) and had a trend of decreasing mRNA expression of IL-8 (=0.05), but did not alter mRNA expression of transforming growth factor-1 in LPS-stimulated Caco-2 cells at 48 h after addition of Lcr35. Compared to non-LPS-pretreated controls, transepithelial electrical resistance (TEER) of the polarized Caco-2 cell monolayers pretreated with LPS for 48 h was decreased by 9.9 % (<0.05). Additionally, compared to those cells only treated with LPS, apical co-incubation with Lcr35 showed biphasic TEER levels increased by 12.1 % (<0.001), 5.7 % (<0.05) and 86.8 % (<0.001) in the Caco-2 cell monolayers compared to those without Lcr35 treatment after 1, 6 and 48 h, respectively. In conclusion, Lcr35 can exert anti-inflammatory effects and ameliorate barrier dysfunction in the LPS-pretreated inflamed intestinal epithelium .

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.009662-0
2010-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/59/5/573.html?itemId=/content/journal/jmm/10.1099/jmm.0.009662-0&mimeType=html&fmt=ahah

References

  1. Bolton A. J., Osborne M. P., Stephen J. 2000; Comparative study of the invasiveness of Salmonella serotypes Typhimurium, Choleraesuis and Dublin for Caco-2 cells, HEp-2 cells and rabbit ileal epithelia. J Med Microbiol 49:503–511
    [Google Scholar]
  2. Chen J., Ng C. P., Rowlands D. K., Xu P. H., Gao J. Y., Chung Y. W., Chan H. C. 2006; Interaction between enteric epithelial cells and Peyer's patch lymphocytes in response to Shigella lipopolysaccharide: effect on nitric oxide and IL-6 release. World J Gastroenterol 12:3895–3900
    [Google Scholar]
  3. Ewaschuk J. B., Diaz H., Meddings L., Diederichs B., Dmytrash A., Backer J., Looijer-van Langen M., Madsen K. L. 2008; Secreted bioactive factors from Bifidobacterium infantis enhance epithelial cell barrier function. Am J Physiol Gastrointest Liver Physiol 295:G1025–G1034 [CrossRef]
    [Google Scholar]
  4. Fang S. B., Lee H. C., Hu J. J., Hou S. Y., Liu H. L., Fang H. W. 2009; Dose-dependent effect of Lactobacillus rhamnosus on quantitative reduction of faecal rotavirus shedding in children. J Trop Pediatr 55:297–301 [CrossRef]
    [Google Scholar]
  5. Gu L., Tseng S., Horner R. M., Tam C., Loda M., Rollins B. J. 2000; Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1. Nature 404:407–411 [CrossRef]
    [Google Scholar]
  6. Guzy C., Schirbel A., Paclik D., Wiedenmann B., Dignass A., Sturm A. 2009; Enteral and parenteral nutrition distinctively modulate intestinal permeability and T cell function in vitro . Eur J Nutr 48:12–21 [CrossRef]
    [Google Scholar]
  7. Haller D., Bode C., Hammes W. P., Pfeifer A. M., Schiffrin E. J., Blum S. 2000; Non-pathogenic bacteria elicit a differential cytokine response by intestinal epithelial cell/leucocyte co-cultures. Gut 47:79–87 [CrossRef]
    [Google Scholar]
  8. Huber A. R., Kunkel S. L., Todd R. F. III, Weiss S. J. 1991; Regulation of transendothelial neutrophil migration by endogenous interleukin-8. Science 254:99–102 [CrossRef]
    [Google Scholar]
  9. Johnson-Henry K. C., Donato K. A., Shen-Tu G., Gordanpour M., Sherman P. M. 2008; Lactobacillus rhamnosus strain GG prevents enterohemorrhagic Escherichia coli O157 : H7-induced changes in epithelial barrier function. Infect Immun 76:1340–1348 [CrossRef]
    [Google Scholar]
  10. Kamada N., Maeda K., Inoue N., Hisamatsu T., Okamoto S., Hong K. S., Yamada T., Watanabe N., Tsuchimoto K. other authors 2008; Nonpathogenic Escherichia coli strain Nissle 1917 inhibits signal transduction in intestinal epithelial cells. Infect Immun 76:214–220 [CrossRef]
    [Google Scholar]
  11. Klingberg T. D., Pedersen M. H., Cencic A., Budde B. B. 2005; Application of measurements of transepithelial electrical resistance of intestinal epithelial cell monolayers to evaluate probiotic activity. Appl Environ Microbiol 71:7528–7530 [CrossRef]
    [Google Scholar]
  12. Koninkx J. F., Brown D. S., Kok W., Hendriks H. G., Pusztai A., Bardocz S. 1996; Polyamine metabolism of enterocyte-like Caco-2 cells after exposure to Phaseolus vulgaris lectin. Gut 38:47–52 [CrossRef]
    [Google Scholar]
  13. Matsumoto M., Benno Y. 2006; Anti-inflammatory metabolite production in the gut from the consumption of probiotic yogurt containing Bifidobacterium animalis subsp. lactis LKM512. Biosci Biotechnol Biochem 70:1287–1292 [CrossRef]
    [Google Scholar]
  14. McCormick B. A., Colgan S. P., Delp-Archer C., Miller S. I., Madara J. L. 1993; Salmonella typhimurium attachment to human intestinal epithelial monolayers: transcellular signalling to subepithelial neutrophils. J Cell Biol 123:895–907 [CrossRef]
    [Google Scholar]
  15. McKay D. M., Croitoru K., Perdue M. H. 1996; T cell-monocyte interactions regulate epithelial physiology in a coculture model of inflammation. Am J Physiol 270:C418–C428
    [Google Scholar]
  16. Ménard S., Candalh C., Bambou J. C., Terpend K., Cerf-Bensussan N., Heyman M. 2004; Lactic acid bacteria secrete metabolites retaining anti-inflammatory properties after intestinal transport. Gut 53:821–828 [CrossRef]
    [Google Scholar]
  17. Mine Y., Zhang J. W. 2003; Surfactants enhance the tight-junction permeability of food allergens in human intestinal epithelial Caco-2 cells. Int Arch Allergy Immunol 130:135–142 [CrossRef]
    [Google Scholar]
  18. Mitic L. L., Van Itallie C. M., Anderson J. M. 2000; Molecular physiology and pathophysiology of tight junctions I. Tight junction structure and function: lessons from mutant animals and proteins. Am J Physiol Gastrointest Liver Physiol 279:G250–G254
    [Google Scholar]
  19. Nemeth E., Fajdiga S., Malago J., Koninkx J., Tooten P., van Dijk J. 2006; Inhibition of Salmonella -induced IL-8 synthesis and expression of Hsp70 in enterocyte-like Caco-2 cells after exposure to non-starter lactobacilli. Int J Food Microbiol 112:266–274 [CrossRef]
    [Google Scholar]
  20. O'Hara J. R., Buret A. G. 2008; Mechanisms of intestinal tight junctional disruption during infection. Front Biosci 13:7008–7021
    [Google Scholar]
  21. O'Hara A. M., O'Regan P., Fanning A., O'Mahony C., Macsharry J., Lyons A., Bienenstock J., O'Mahony L., Shanahan F. 2006; Functional modulation of human intestinal epithelial cell responses by Bifidobacterium infantis and Lactobacillus salivarius . Immunology 118:202–215 [CrossRef]
    [Google Scholar]
  22. Otte J. M., Podolsky D. K. 2004; Functional modulation of enterocytes by gram-positive and gram-negative microorganisms. Am J Physiol Gastrointest Liver Physiol 286:G613–G626 [CrossRef]
    [Google Scholar]
  23. Parlesak A., Haller D., Brinz S., Baeuerlein A., Bode C. 2004; Modulation of cytokine release by differentiated CACO-2 cells in a compartmentalized coculture model with mononuclear leucocytes and nonpathogenic bacteria. Scand J Immunol 60:477–485 [CrossRef]
    [Google Scholar]
  24. Ramiro-Puig E., Perez-Cano F. J., Castellote C., Franch A., Castell M. 2008; The bowel: a key component of the immune system. Rev Esp Enferm Dig 100:29–34
    [Google Scholar]
  25. Saegusa S., Totsuka M., Kaminogawa S., Hosoi T. 2007; Cytokine responses of intestinal epithelial-like Caco-2 cells to non-pathogenic and opportunistic pathogenic yeasts in the presence of butyric acid. Biosci Biotechnol Biochem 71:2428–2434 [CrossRef]
    [Google Scholar]
  26. Satsu H., Yokoyama T., Ogawa N., Fujiwara-Hatano Y., Shimizu M. 2003; Effect of neuronal PC12 cells on the functional properties of intestinal epithelial Caco-2 cells. Biosci Biotechnol Biochem 67:1312–1318 [CrossRef]
    [Google Scholar]
  27. Sierro F., Dubois B., Coste A., Kaiserlian D., Kraehenbuhl J. P., Sirard J. C. 2001; Flagellin stimulation of intestinal epithelial cells triggers CCL20-mediated migration of dendritic cells. Proc Natl Acad Sci U S A 98:13722–13727 [CrossRef]
    [Google Scholar]
  28. Szymanski H., Pejcz J., Jawien M., Chmielarczyk A., Strus M., Heczko P. B. 2006; Treatment of acute infectious diarrhoea in infants and children with a mixture of three Lactobacillus rhamnosus strains – a randomized, double-blind, placebo-controlled trial. Aliment Pharmacol Ther 23:247–253 [CrossRef]
    [Google Scholar]
  29. Tien M. T., Girardin S. E., Regnault B., Le B. L., Dillies M. A., Coppee J. Y., Bourdet-Sicard R., Sansonetti P. J., Pédron T. 2006; Anti-inflammatory effect of Lactobacillus casei on Shigella -infected human intestinal epithelial cells. J Immunol 176:1228–1237 [CrossRef]
    [Google Scholar]
  30. Ukena S. N., Westendorf A. M., Hansen W., Rohde M., Geffers R., Coldewey S., Suerbaum S., Buer J., Gunzer F. 2005; The host response to the probiotic Escherichia coli strain Nissle 1917: specific up-regulation of the proinflammatory chemokine MCP-1. BMC Med Genet 6:43
    [Google Scholar]
  31. Weglarz L., Wawszczyk J., Orchel A., Jaworska-Kik M., Dzierzewicz Z. 2007; Phytic acid modulates in vitro IL-8 and IL-6 release from colonic epithelial cells stimulated with LPS and IL-1 β . Dig Dis Sci 52:93–102 [CrossRef]
    [Google Scholar]
  32. Zhang L., Li N., Caicedo R., Neu J. 2005; Alive and dead Lactobacillus rhamnosus GG decrease tumor necrosis factor- α -induced interleukin-8 production in Caco-2 cells. J Nutr 135:1752–1756
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.009662-0
Loading
/content/journal/jmm/10.1099/jmm.0.009662-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed