1887

Abstract

In this study, we investigated the anti-inflammatory and reinforcing barrier effects of subsp. (Lcr35) on Caco-2 intestinal epithelial cells already exposed to LPS. Using the Transwell co-culture model, LPS was apically added to polarized Caco-2 cells co-cultured with peripheral blood mononuclear cells (PBMCs) in the basolateral compartment. LPS-stimulated Caco-2 cells were incubated with Lcr35 for 1, 6, 24 or 48 h. Apical inoculation of Lcr35 after 48 h significantly inhibited the basolateral secretion of interleukin-8 (IL-8) in the Caco-2/PBMC co-culture. The PCR analysis showed that Lcr35 significantly downregulated mRNA expression of monocyte chemoattractant protein 1 (MCP-1) (<0.05) and had a trend of decreasing mRNA expression of IL-8 (=0.05), but did not alter mRNA expression of transforming growth factor-1 in LPS-stimulated Caco-2 cells at 48 h after addition of Lcr35. Compared to non-LPS-pretreated controls, transepithelial electrical resistance (TEER) of the polarized Caco-2 cell monolayers pretreated with LPS for 48 h was decreased by 9.9 % (<0.05). Additionally, compared to those cells only treated with LPS, apical co-incubation with Lcr35 showed biphasic TEER levels increased by 12.1 % (<0.001), 5.7 % (<0.05) and 86.8 % (<0.001) in the Caco-2 cell monolayers compared to those without Lcr35 treatment after 1, 6 and 48 h, respectively. In conclusion, Lcr35 can exert anti-inflammatory effects and ameliorate barrier dysfunction in the LPS-pretreated inflamed intestinal epithelium .

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.009662-0
2010-05-01
2019-11-20
Loading full text...

Full text loading...

/deliver/fulltext/jmm/59/5/573.html?itemId=/content/journal/jmm/10.1099/jmm.0.009662-0&mimeType=html&fmt=ahah

References

  1. Bolton, A. J., Osborne, M. P. & Stephen, J. ( 2000; ). Comparative study of the invasiveness of Salmonella serotypes Typhimurium, Choleraesuis and Dublin for Caco-2 cells, HEp-2 cells and rabbit ileal epithelia. J Med Microbiol 49, 503–511.
    [Google Scholar]
  2. Chen, J., Ng, C. P., Rowlands, D. K., Xu, P. H., Gao, J. Y., Chung, Y. W. & Chan, H. C. ( 2006; ). Interaction between enteric epithelial cells and Peyer's patch lymphocytes in response to Shigella lipopolysaccharide: effect on nitric oxide and IL-6 release. World J Gastroenterol 12, 3895–3900.
    [Google Scholar]
  3. Ewaschuk, J. B., Diaz, H., Meddings, L., Diederichs, B., Dmytrash, A., Backer, J., Looijer-van Langen, M. & Madsen, K. L. ( 2008; ). Secreted bioactive factors from Bifidobacterium infantis enhance epithelial cell barrier function. Am J Physiol Gastrointest Liver Physiol 295, G1025–G1034.[CrossRef]
    [Google Scholar]
  4. Fang, S. B., Lee, H. C., Hu, J. J., Hou, S. Y., Liu, H. L. & Fang, H. W. ( 2009; ). Dose-dependent effect of Lactobacillus rhamnosus on quantitative reduction of faecal rotavirus shedding in children. J Trop Pediatr 55, 297–301.[CrossRef]
    [Google Scholar]
  5. Gu, L., Tseng, S., Horner, R. M., Tam, C., Loda, M. & Rollins, B. J. ( 2000; ). Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1. Nature 404, 407–411.[CrossRef]
    [Google Scholar]
  6. Guzy, C., Schirbel, A., Paclik, D., Wiedenmann, B., Dignass, A. & Sturm, A. ( 2009; ). Enteral and parenteral nutrition distinctively modulate intestinal permeability and T cell function in vitro. Eur J Nutr 48, 12–21.[CrossRef]
    [Google Scholar]
  7. Haller, D., Bode, C., Hammes, W. P., Pfeifer, A. M., Schiffrin, E. J. & Blum, S. ( 2000; ). Non-pathogenic bacteria elicit a differential cytokine response by intestinal epithelial cell/leucocyte co-cultures. Gut 47, 79–87.[CrossRef]
    [Google Scholar]
  8. Huber, A. R., Kunkel, S. L., Todd, R. F., III & Weiss, S. J. ( 1991; ). Regulation of transendothelial neutrophil migration by endogenous interleukin-8. Science 254, 99–102.[CrossRef]
    [Google Scholar]
  9. Johnson-Henry, K. C., Donato, K. A., Shen-Tu, G., Gordanpour, M. & Sherman, P. M. ( 2008; ). Lactobacillus rhamnosus strain GG prevents enterohemorrhagic Escherichia coli O157 : H7-induced changes in epithelial barrier function. Infect Immun 76, 1340–1348.[CrossRef]
    [Google Scholar]
  10. Kamada, N., Maeda, K., Inoue, N., Hisamatsu, T., Okamoto, S., Hong, K. S., Yamada, T., Watanabe, N., Tsuchimoto, K. & other authors ( 2008; ). Nonpathogenic Escherichia coli strain Nissle 1917 inhibits signal transduction in intestinal epithelial cells. Infect Immun 76, 214–220.[CrossRef]
    [Google Scholar]
  11. Klingberg, T. D., Pedersen, M. H., Cencic, A. & Budde, B. B. ( 2005; ). Application of measurements of transepithelial electrical resistance of intestinal epithelial cell monolayers to evaluate probiotic activity. Appl Environ Microbiol 71, 7528–7530.[CrossRef]
    [Google Scholar]
  12. Koninkx, J. F., Brown, D. S., Kok, W., Hendriks, H. G., Pusztai, A. & Bardocz, S. ( 1996; ). Polyamine metabolism of enterocyte-like Caco-2 cells after exposure to Phaseolus vulgaris lectin. Gut 38, 47–52.[CrossRef]
    [Google Scholar]
  13. Matsumoto, M. & Benno, Y. ( 2006; ). Anti-inflammatory metabolite production in the gut from the consumption of probiotic yogurt containing Bifidobacterium animalis subsp. lactis LKM512. Biosci Biotechnol Biochem 70, 1287–1292.[CrossRef]
    [Google Scholar]
  14. McCormick, B. A., Colgan, S. P., Delp-Archer, C., Miller, S. I. & Madara, J. L. ( 1993; ). Salmonella typhimurium attachment to human intestinal epithelial monolayers: transcellular signalling to subepithelial neutrophils. J Cell Biol 123, 895–907.[CrossRef]
    [Google Scholar]
  15. McKay, D. M., Croitoru, K. & Perdue, M. H. ( 1996; ). T cell-monocyte interactions regulate epithelial physiology in a coculture model of inflammation. Am J Physiol 270, C418–C428.
    [Google Scholar]
  16. Ménard, S., Candalh, C., Bambou, J. C., Terpend, K., Cerf-Bensussan, N. & Heyman, M. ( 2004; ). Lactic acid bacteria secrete metabolites retaining anti-inflammatory properties after intestinal transport. Gut 53, 821–828.[CrossRef]
    [Google Scholar]
  17. Mine, Y. & Zhang, J. W. ( 2003; ). Surfactants enhance the tight-junction permeability of food allergens in human intestinal epithelial Caco-2 cells. Int Arch Allergy Immunol 130, 135–142.[CrossRef]
    [Google Scholar]
  18. Mitic, L. L., Van Itallie, C. M. & Anderson, J. M. ( 2000; ). Molecular physiology and pathophysiology of tight junctions I. Tight junction structure and function: lessons from mutant animals and proteins. Am J Physiol Gastrointest Liver Physiol 279, G250–G254.
    [Google Scholar]
  19. Nemeth, E., Fajdiga, S., Malago, J., Koninkx, J., Tooten, P. & van Dijk, J. ( 2006; ). Inhibition of Salmonella-induced IL-8 synthesis and expression of Hsp70 in enterocyte-like Caco-2 cells after exposure to non-starter lactobacilli. Int J Food Microbiol 112, 266–274.[CrossRef]
    [Google Scholar]
  20. O'Hara, J. R. & Buret, A. G. ( 2008; ). Mechanisms of intestinal tight junctional disruption during infection. Front Biosci 13, 7008–7021.
    [Google Scholar]
  21. O'Hara, A. M., O'Regan, P., Fanning, A., O'Mahony, C., Macsharry, J., Lyons, A., Bienenstock, J., O'Mahony, L. & Shanahan, F. ( 2006; ). Functional modulation of human intestinal epithelial cell responses by Bifidobacterium infantis and Lactobacillus salivarius. Immunology 118, 202–215.[CrossRef]
    [Google Scholar]
  22. Otte, J. M. & Podolsky, D. K. ( 2004; ). Functional modulation of enterocytes by gram-positive and gram-negative microorganisms. Am J Physiol Gastrointest Liver Physiol 286, G613–G626.[CrossRef]
    [Google Scholar]
  23. Parlesak, A., Haller, D., Brinz, S., Baeuerlein, A. & Bode, C. ( 2004; ). Modulation of cytokine release by differentiated CACO-2 cells in a compartmentalized coculture model with mononuclear leucocytes and nonpathogenic bacteria. Scand J Immunol 60, 477–485.[CrossRef]
    [Google Scholar]
  24. Ramiro-Puig, E., Perez-Cano, F. J., Castellote, C., Franch, A. & Castell, M. ( 2008; ). The bowel: a key component of the immune system. Rev Esp Enferm Dig 100, 29–34.
    [Google Scholar]
  25. Saegusa, S., Totsuka, M., Kaminogawa, S. & Hosoi, T. ( 2007; ). Cytokine responses of intestinal epithelial-like Caco-2 cells to non-pathogenic and opportunistic pathogenic yeasts in the presence of butyric acid. Biosci Biotechnol Biochem 71, 2428–2434.[CrossRef]
    [Google Scholar]
  26. Satsu, H., Yokoyama, T., Ogawa, N., Fujiwara-Hatano, Y. & Shimizu, M. ( 2003; ). Effect of neuronal PC12 cells on the functional properties of intestinal epithelial Caco-2 cells. Biosci Biotechnol Biochem 67, 1312–1318.[CrossRef]
    [Google Scholar]
  27. Sierro, F., Dubois, B., Coste, A., Kaiserlian, D., Kraehenbuhl, J. P. & Sirard, J. C. ( 2001; ). Flagellin stimulation of intestinal epithelial cells triggers CCL20-mediated migration of dendritic cells. Proc Natl Acad Sci U S A 98, 13722–13727.[CrossRef]
    [Google Scholar]
  28. Szymanski, H., Pejcz, J., Jawien, M., Chmielarczyk, A., Strus, M. & Heczko, P. B. ( 2006; ). Treatment of acute infectious diarrhoea in infants and children with a mixture of three Lactobacillus rhamnosus strains – a randomized, double-blind, placebo-controlled trial. Aliment Pharmacol Ther 23, 247–253.[CrossRef]
    [Google Scholar]
  29. Tien, M. T., Girardin, S. E., Regnault, B., Le, B. L., Dillies, M. A., Coppee, J. Y., Bourdet-Sicard, R., Sansonetti, P. J. & Pédron, T. ( 2006; ). Anti-inflammatory effect of Lactobacillus casei on Shigella-infected human intestinal epithelial cells. J Immunol 176, 1228–1237.[CrossRef]
    [Google Scholar]
  30. Ukena, S. N., Westendorf, A. M., Hansen, W., Rohde, M., Geffers, R., Coldewey, S., Suerbaum, S., Buer, J. & Gunzer, F. ( 2005; ). The host response to the probiotic Escherichia coli strain Nissle 1917: specific up-regulation of the proinflammatory chemokine MCP-1. BMC Med Genet 6, 43
    [Google Scholar]
  31. Weglarz, L., Wawszczyk, J., Orchel, A., Jaworska-Kik, M. & Dzierzewicz, Z. ( 2007; ). Phytic acid modulates in vitro IL-8 and IL-6 release from colonic epithelial cells stimulated with LPS and IL-1β. Dig Dis Sci 52, 93–102.[CrossRef]
    [Google Scholar]
  32. Zhang, L., Li, N., Caicedo, R. & Neu, J. ( 2005; ). Alive and dead Lactobacillus rhamnosus GG decrease tumor necrosis factor-α-induced interleukin-8 production in Caco-2 cells. J Nutr 135, 1752–1756.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.009662-0
Loading
/content/journal/jmm/10.1099/jmm.0.009662-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error