Rapid and cost-effective identification of species using mass spectrometry Free

Abstract

Bacteria of the genus are emerging zoonotic bacteria recognized in a variety of human diseases. Due to their poor chemical reactivity, these fastidious bacteria are poorly characterized using routine phenotypic laboratory tests. Identification is usually achieved using molecular techniques that are time-consuming, expensive and technically demanding. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has emerged as a new technique for bacterial species identification. This study evaluated the use of MALDI-TOF MS for rapid genus and species identification of species. Reference strains representing 17 recognized species were studied. For each species, MS spectra for four colonies were analysed. The consensus spectrum obtained for each species was unique among spectra obtained for 2843 bacteria within the Bruker database, including 109 alphaproteobacteria. Thirty-nine additional blind-coded strains were correctly identified at the species level, including 36 with a significant score. Altogether, these data demonstrate that MS is an accurate and reproducible tool for rapid and inexpensive identification of species.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.009647-0
2009-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/58/9/1154.html?itemId=/content/journal/jmm/10.1099/jmm.0.009647-0&mimeType=html&fmt=ahah

References

  1. Avidor B., Graidy M., Efrat G., Leibowitz C., Shapira G., Schattner A., Zimhony O., Giladi M. 2004; Bartonella koehlerae , a new cat-associated agent of culture-negative human endocarditis. J Clin Microbiol 42:3462–3468 [CrossRef]
    [Google Scholar]
  2. Barbuddhe S. B., Maier T., Schwarz G., Kostrzewa M., Hof H., Domann E., Chakraborty T., Hain T. 2008; Rapid identification and typing of Listeria species by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol 74:5402–5407 [CrossRef]
    [Google Scholar]
  3. Benson D. A., Karsch-Mizrachi I., Lipman D. J., Ostell J., Wheeler D. L. 2003; GenBank. Nucleic Acids Res 31:23–27 [CrossRef]
    [Google Scholar]
  4. Bereswill S., Hinkelmann S., Kist M., Sander A. 1999; Molecular analysis of riboflavin synthesis genes in Bartonella henselae and use of the ribC gene for differentiation of Bartonella species by PCR. J Clin Microbiol 37:3159–3166
    [Google Scholar]
  5. Birtles R. J., Harrison T. G., Saunders N. A., Molyneux D. H. 1995; Proposals to unify the genera Grahamella and Bartonella , with descriptions of Bartonella talpae comb. nov., Bartonella peromysci comb. nov., and three new species, Bartonella grahamii sp.nov., Bartonella taylorii sp. nov., and Bartonella doshiae sp. nov. Int J Syst Bacteriol 45:1–8 [CrossRef]
    [Google Scholar]
  6. Breitschwerdt E. B., Kordick D. L. 2000; Bartonella infection in animals: carriership, reservoir potential, pathogenicity, and zoonotic potential for human infection. Clin Microbiol Rev 13:428–438 [CrossRef]
    [Google Scholar]
  7. Daly J. S., Worthington M. G., Brenner D. J., Moss W. C., Hollis D. G., Weyant R. S., Steigerwalt A. G., Weaver R. E., Daneshvar M. I., O'Connor S. P. 1993; Rochalimaea elizabethae sp. nov. isolated from a patient with endocarditis. J Clin Microbiol 31:872–881
    [Google Scholar]
  8. Degand N., Carbonnelle E., Dauphin B., Beretti J. L., Le B. M., Sermet-Gaudelus I., Segonds C., Berche P., Nassif X., Ferroni A. 2008; Matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of nonfermenting Gram-negative bacilli isolated from cystic fibrosis patients. J Clin Microbiol 46:3361–3367 [CrossRef]
    [Google Scholar]
  9. Drancourt M., Birtles R. J., Chaumentin G., Vandenesch F., Etienne J., Raoult D. 1996; New serotype of Bartonella henselae in endocarditis and cat-scratch disease. Lancet 347:441–443 [CrossRef]
    [Google Scholar]
  10. Grosse-Herrenthey A., Maier T., Gessler F., Schaumann R., Bohnel H., Kostrzewa M., Kruger M. 2008; Challenging the problem of clostridial identification with matrix-assisted laser desorption and ionization-time-of-flight mass spectrometry (MALDI-TOF MS).. Anaerobe 14:242–249 [CrossRef]
    [Google Scholar]
  11. Heller R., Riegel P., Hansmann Y., Delacour G., Bermond D., Dehio C., Lamarque F., Monteil H., Chomel B., Piémont Y. 1998; Bartonella tribocorum sp. nov., a new Bartonella species isolated from the blood of wild rats. Int J Syst Bacteriol 48:1333–1339 [CrossRef]
    [Google Scholar]
  12. Houpikian P., Raoult D. 2001; 16S/23S rRNA intergenic spacer regions for phylogenetic analysis, identification, and subtyping of Bartonella species. J Clin Microbiol 39:2768–2778 [CrossRef]
    [Google Scholar]
  13. Hsieh S. Y., Tseng C. L., Lee Y. S., Kuo A. J., Sun C. F., Lin Y. H., Chen J. K. 2008; Highly efficient classification and identification of human pathogenic bacteria by MALDI-TOF MS. Mol Cell Proteomics 7:448–456
    [Google Scholar]
  14. Kerkhoff F. T., Bergmans A. M. C., van der Zee A., Rothova A. 1999; Demonstration of Bartonella grahamii DNA in ocular fluids of a patient with neuroretinitis. J Clin Microbiol 37:4034–4038
    [Google Scholar]
  15. Mellmann A., Cloud J., Maier T., Keckevoet U., Ramminger I., Iwen P., Dunn J., Hall G., Wilson D. other authors 2008; Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in comparison with 16S rRNA gene sequencing for species identification of nonfermenting bacteria. J Clin Microbiol 46:1946–1954 [CrossRef]
    [Google Scholar]
  16. Parisi D., Magliulo M., Nanni P., Casale M., Forina M., Roda A. 2008; Analysis and classification of bacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and a chemometric approach. Anal Bioanal Chem 391:2127–2134 [CrossRef]
    [Google Scholar]
  17. Raoult D., Roblot F., Rolain J. M., Besnier J. M., Loulergue J., Bastides F., Choutet P. 2006; First isolation of Bartonella alsatica from a valve of a patient with endocarditis. J Clin Microbiol 44:278–279 [CrossRef]
    [Google Scholar]
  18. Roux V., Eykyn S. J., Wyllie S., Raoult D. 2000; Bartonella vinsonii subsp. berkhoffii as an agent of afebrile blood culture-negative endocarditis in a human. J Clin Microbiol 38:1698–1700
    [Google Scholar]
  19. Sauer S., Freiwald A., Maier T., Kube M., Reinhardt R., Kostrzewa M., Geider K. 2008; Classification and identification of bacteria by mass spectrometry and computational analysis. PLoS One 3:e2843 [CrossRef]
    [Google Scholar]
  20. Stingu C. S., Rodloff A. C., Jentsch H., Schaumann R., Eschrich K. 2008; Rapid identification of oral anaerobic bacteria cultivated from subgingival biofilm by MALDI-TOF-MS. Oral Microbiol Immunol 23:372–376 [CrossRef]
    [Google Scholar]
  21. Sweger D., Resto-Ruiz S., Johnson D. P., Schmiederer M., Hawke N., Anderson B. 2000; Conservation of the 17-kilodalton antigen gene within the genus Bartonella . Clin Diagn Lab Immunol 7:251–257
    [Google Scholar]
  22. Tatusova T. A., Madden T. L. 1999; blast 2 sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiol Lett 174:247–250 [CrossRef]
    [Google Scholar]
  23. Vanlaere E., Sergeant K., Dawyndt P., Kallow W., Erhard M., Sutton H., Dare D., Devreese B., Samyn B., Vandamme P. 2008; Matrix-assisted laser desorption ionisation-time-of of-flight mass spectrometry of intact cells allows rapid identification of Burkholderia cepacia complex. J Microbiol Methods 75:279–286 [CrossRef]
    [Google Scholar]
  24. Viezens J., Arvand M. 2008; Simultaneous presence of two different copies of the 16S rRNA gene in Bartonella henselae . Microbiology 154:2881–2886 [CrossRef]
    [Google Scholar]
  25. Welch D. F. 2005; Family II. Bartonellaceae Gieszczykiewicz 1939, 25AL . In Bergey's Manual of Systematic Bacteriology pp 362–370 Edited by Brenner D. J., Krieg N. R., Staley J. T. New York: Springer;
    [Google Scholar]
  26. Welch D. F., Carroll K. C., Hofmeister E. K., Persing D. H., Robison D. A., Steigerwalt A. G., Brenner D. J. 1999; Isolation of a new subspecies, Bartonella vinsonii subsp. arupensis , from a cattle rancher: identity with isolates found in conjunction with Borrelia burgdorferi and Babesia microti among naturally infected mice. J Clin Microbiol 37:2598–2601
    [Google Scholar]
  27. Zeaiter Z., Fournier P. E., Ogata H., Raoult D. 2002a; Phylogenetic classification of Bartonella species by comparing groEL sequences. Int J Syst Evol Microbiol 52:165–171
    [Google Scholar]
  28. Zeaiter Z., Liang Z., Raoult D. 2002b; Genetic classification and differentiation of Bartonella species based on comparison of partial ftsZ gene sequences. J Clin Microbiol 40:3641–3647 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.009647-0
Loading
/content/journal/jmm/10.1099/jmm.0.009647-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed