1887

Abstract

Inhalational anthrax is the most severe form of anthrax. It has been shown in small-animal and non-human primate models that relatively large pools of ungerminated spores can remain within the alveolar spaces for days to weeks post-inhalation or until transported to areas more favourable for germination and bacillary outgrowth. In this study, spores of the Ames strain that were exposed to germination-inducing media prior to intranasal delivery were significantly less infectious than spores delivered in either water or germination-inhibitory medium. The effect of manipulating the germination potential of these spores within the lungs of infected mice by exogenous germination-altering media was examined. The data suggested that neither inducing germination nor inhibiting germination of spores within the lungs protected mice from the ensuing infection. Germination-altering strategies could, instead, significantly increase the severity of disease in a mouse model of inhalational anthrax when implemented . It was shown that germination-altering strategies, in this study, were not beneficial to the infected host and are impractical as countermeasures.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.008656-0
2009-06-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/jmm/58/6/816.html?itemId=/content/journal/jmm/10.1099/jmm.0.008656-0&mimeType=html&fmt=ahah

References

  1. Akoachere, M., Squires, R. C., Nour, A. M., Angelov, L., Brojatsch, J. & Abel-Santos, E. ( 2007; ). Identification of an in vivo inhibitor of Bacillus anthracis spore germination. J Biol Chem 282, 12112–12118.[CrossRef]
    [Google Scholar]
  2. Altboum, Z., Gozes, Y., Barnea, A., Pass, A., White, M. & Kobiler, D. ( 2002; ). Postexposure prophylaxis against anthrax: evaluation of various treatment regimens in intranasally infected guinea pigs. Infect Immun 70, 6231–6241.[CrossRef]
    [Google Scholar]
  3. Alvarez, Z. & Abel-Santos, E. ( 2007; ). Potential use of inhibitors of bacteria spore germination in the prophylactic treatment of anthrax and Clostridium difficile-associated disease. Expert Rev Anti Infect Ther 5, 783–792.[CrossRef]
    [Google Scholar]
  4. Banks, D. J., Barnajian, M., Maldonado-Arocho, F. J., Sanchez, A. M. & Bradley, K. A. ( 2005; ). Anthrax toxin receptor 2 mediates Bacillus anthracis killing of macrophages following spore challenge. Cell Microbiol 7, 1173–1185.[CrossRef]
    [Google Scholar]
  5. Barnes, J. M. ( 1947; ). The development of anthrax following the administration of spores by inhalation. Br J Exp Pathol 28, 385–393.
    [Google Scholar]
  6. Bozue, J. A., Parthasarathy, N., Phillips, L. R., Cote, C. K., Fellows, P. F., Mendelson, I., Shafferman, A. & Friedlander, A. M. ( 2005; ). Construction of a rhamnose mutation in Bacillus anthracis affects adherence to macrophages but not virulence in guinea pigs. Microb Pathog 38, 1–12.[CrossRef]
    [Google Scholar]
  7. Bozue, J., Cote, C. K., Moody, K. L. & Welkos, S. L. ( 2007a; ). Fully virulent Bacillus anthracis does not require the immunodominant protein, BclA, for pathogenesis. Infect Immun 75, 508–511.[CrossRef]
    [Google Scholar]
  8. Bozue, J., Moody, K. L., Cote, C. K., Stiles, B. G., Friedlander, A. M., Welkos, S. L. & Hale, M. L. ( 2007b; ). Bacillus anthracis spores of the bclA mutant exhibit increased adherence to epithelial cells, fibroblasts, and endothelial cells but not to macrophages. Infect Immun 75, 4498–4505.[CrossRef]
    [Google Scholar]
  9. Cleret, A., Quesnel-Hellmann, A., Vallon-Eberhard, A., Verrier, B., Jung, S., Vidal, D., Mathieu, J. & Tournier, J. N. ( 2007; ). Lung dendritic cells rapidly mediate anthrax spore entry through the pulmonary route. J Immunol 178, 7994–8001.[CrossRef]
    [Google Scholar]
  10. Cote, C. K., Rossi, C. A., Kang, A. S., Morrow, P. R., Lee, J. S. & Welkos, S. L. ( 2005; ). The detection of protective antigen (PA) associated with spores of Bacillus anthracis and the effects of anti-PA antibodies on spore germination and macrophage interactions. Microb Pathog 38, 209–225.[CrossRef]
    [Google Scholar]
  11. Cote, C. K., van Rooijen, N. & Welkos, S. L. ( 2006; ). The roles of macrophages and neutrophils in the early host response to Bacillus anthracis spores using a mouse model of infection. Infect Immun 74, 469–480.[CrossRef]
    [Google Scholar]
  12. Cote, C. K., DiMezzo, T. L., Banks, D. J., France, B., Bradley, K. A. & Welkos, S. L. ( 2008; ). Early interactions between fully virulent Bacillus anthracis and macrophages that influence the balance between spore clearance and development of a lethal infection. Microbes Infect 10, 613–619.[CrossRef]
    [Google Scholar]
  13. Cown, W. B., Kethley, T. W. & Fincher, E. L. ( 1957; ). The critical-orifice liquid impinger as a sampler for bacterial aerosols. Appl Microbiol 5, 119–124.
    [Google Scholar]
  14. Driks, A. ( 2002; ). Maximum shields: the armor plating of the bacterial spore. Trends Microbiol 10, 251–254.[CrossRef]
    [Google Scholar]
  15. Drusano, G. L., Okusanya, O. O., Okusanya, A., Van Scoy, B., Brown, D. L., Kulawy, R., Sorgel, F., Heine, H. S. & Louie, A. ( 2008; ). Is 60 days of ciprofloxacin administration necessary for post-exposure prophylaxis for Bacillus anthracis? Antimicrob Agents Chemother 52, 3973–3979.[CrossRef]
    [Google Scholar]
  16. Drysdale, M., Heninger, S., Hutt, J., Chen, Y., Lyons, C. R. & Koehler, T. M. ( 2005; ). Capsule synthesis by Bacillus anthracis is required for dissemination in murine inhalation anthrax. EMBO J 24, 221–227.[CrossRef]
    [Google Scholar]
  17. Friedlander, A. M. ( 2000; ). Anthrax: clinical features, pathogenesis, and potential biological warfare threat. Curr Clin Top Infect Dis 20, 335–349.
    [Google Scholar]
  18. Friedlander, A. M., Welkos, S. L., Pitt, M. L., Ezzell, J. W., Worsham, P. L., Rose, K. J., Ivins, B. E., Lowe, J. R., Howe, G. B. & other authors ( 1993; ). Postexposure prophylaxis against experimental inhalation anthrax. J Infect Dis 167, 1239–1243.[CrossRef]
    [Google Scholar]
  19. Giorno, R., Bozue, J., Cote, C., Wenzel, T., Moody, K. S., Mallozzi, M., Ryan, M., Wang, R., Zielke, R. & other authors ( 2007; ). Morphogenesis of the Bacillus anthracis spore. J Bacteriol 189, 691–705.[CrossRef]
    [Google Scholar]
  20. Glomski, I. J., Piris-Gimenez, A., Huerre, M., Mock, M. & Goossens, P. L. ( 2007; ). Primary involvement of pharynx and Peyer's patch in inhalational and intestinal anthrax. PLoS Pathog 3, e76 [CrossRef]
    [Google Scholar]
  21. Guidi-Rontani, C., Weber-Levy, M., Labruyere, E. & Mock, M. ( 1999; ). Germination of Bacillus anthracis spores within alveolar macrophages. Mol Microbiol 31, 9–17.[CrossRef]
    [Google Scholar]
  22. Gut, I. M., Prouty, A. M., Ballard, J. D., van der Donk, W. A. & Blanke, S. R. ( 2008; ). Inhibition of Bacillus anthracis spore outgrowth by nisin. Antimicrob Agents Chemother 52, 4281–4288.[CrossRef]
    [Google Scholar]
  23. Henderson, D. W., Peacock, S. & Belton, F. C. ( 1956; ). Observations on the prophylaxis of experimental pulmonary anthrax in the monkey. J Hyg (Lond) 54, 28–36.[CrossRef]
    [Google Scholar]
  24. Heninger, S., Drysdale, M., Lovchik, J., Hutt, J., Lipscomb, M. F., Koehler, T. M. & Lyons, C. R. ( 2006; ). Toxin-deficient mutants of Bacillus anthracis are lethal in a murine model for pulmonary anthrax. Infect Immun 74, 6067–6074.[CrossRef]
    [Google Scholar]
  25. Hu, H., Sa, Q., Koehler, T. M., Aronson, A. I. & Zhou, D. ( 2006; ). Inactivation of Bacillus anthracis spores in murine primary macrophages. Cell Microbiol 8, 1634–1642.[CrossRef]
    [Google Scholar]
  26. Ireland, J. A. W. & Hanna, P. C. ( 2002; ). Amino acid- and purine ribonucleoside-induced germination of Bacillus anthracis ΔSterne endospores: gerS mediates responses to aromatic ring structures. J Bacteriol 184, 1296–1303.[CrossRef]
    [Google Scholar]
  27. Kang, T. J., Fenton, M. J., Weiner, M. A., Hibbs, S., Basu, S., Baillie, L. & Cross, A. S. ( 2005; ). Murine macrophages kill the vegetative form of Bacillus anthracis. Infect Immun 73, 7495–7501.[CrossRef]
    [Google Scholar]
  28. Leighton, T. J. & Doi, R. H. ( 1971; ). The stability of messenger ribonucleic acid during sporulation in Bacillus subtilis. J Biol Chem 246, 3189–3195.
    [Google Scholar]
  29. Little, S. F. & Knudson, G. B. ( 1986; ). Comparative efficacy of Bacillus anthracis live spore vaccine and protective antigen vaccine against anthrax in the guinea pig. Infect Immun 52, 509–512.
    [Google Scholar]
  30. Loving, C. L., Kennett, M., Lee, G. M., Grippe, V. K. & Merkel, T. J. ( 2007; ). Murine aerosol challenge model of anthrax. Infect Immun 75, 2689–2698.[CrossRef]
    [Google Scholar]
  31. May, K. R. ( 1973; ). The collision nebulizer: description, performance and applications. J Aerosol Sci 4, 235–243.[CrossRef]
    [Google Scholar]
  32. McKevitt, M. T., Bryant, K. M., Shakir, S. M., Larabee, J. L., Blanke, S. R., Lovchik, J., Lyons, C. R. & Ballard, J. D. ( 2007; ). Effects of endogenous d-alanine synthesis and autoinhibition of Bacillus anthracis germination on in vitro and in vivo infections. Infect Immun 75, 5726–5734.[CrossRef]
    [Google Scholar]
  33. Mock, M. & Fouet, A. ( 2001; ). Anthrax. Annu Rev Microbiol 55, 647–671.[CrossRef]
    [Google Scholar]
  34. Moir, A., Corfe, B. M. & Behravan, J. ( 2002; ). Spore germination. Cell Mol Life Sci 59, 403–409.[CrossRef]
    [Google Scholar]
  35. Oliva, C. R., Swiecki, M., Griguer, E., Lisanby, M. W., Bullard, D. C., Turnbough, C. L. & Kearney, J. F. ( 2008; ). The integrin Mac-1 (CR3) mediates internalization and directs Bacillus anthracis spores into professional phagocytes. Proc Natl Acad Sci U S A 105, 1261–1266.[CrossRef]
    [Google Scholar]
  36. Pickering, A. K., Osorio, M., Lee, G. M., Grippe, V. K., Bray, M. & Merkel, T. J. ( 2004; ). Cytokine response to infection with Bacillus anthracis spores. Infect Immun 72, 6382–6389.[CrossRef]
    [Google Scholar]
  37. Ross, J. M. ( 1957; ). The pathogenesis of anthrax following the administration of spores by the respiratory route. J Pathol Bacteriol 73, 485–494.[CrossRef]
    [Google Scholar]
  38. Russell, B. H., Liu, Q., Jenkins, S. A., Tuvim, M. J. & Xu, Y. ( 2008a; ). In vivo demonstration and quantification of intracellular Bacillus anthracis in lung epithelial cells. Infect Immun 76, 3975–3983.[CrossRef]
    [Google Scholar]
  39. Russell, B. H., Vasan, R., Keene, D. R., Koehler, T. M. & Xu, Y. ( 2008b; ). Potential dissemination of Bacillus anthracis utilizing human lung epithelial cells. Cell Microbiol 10, 945–957.[CrossRef]
    [Google Scholar]
  40. Sanz, P., Teel, L. D., Alem, F., Carvalho, H. M., Darnell, S. C. & O'Brien, A. D. ( 2008; ). Detection of Bacillus anthracis spore germination in vivo by bioluminescence imaging. Infect Immun 76, 1036–1047.[CrossRef]
    [Google Scholar]
  41. Warfel, J. M., Steele, A. D. & D'Agnillo, F. ( 2005; ). Anthrax lethal toxin induces endothelial barrier dysfunction. Am J Pathol 166, 1871–1881.[CrossRef]
    [Google Scholar]
  42. Welkos, S. L., Keener, T. J. & Gibbs, P. H. ( 1986; ). Differences in susceptibility of inbred mice to Bacillus anthracis. Infect Immun 51, 795–800.
    [Google Scholar]
  43. Welkos, S., Friedlander, A., Weeks, S., Little, S. & Mendelson, I. ( 2002; ). In-vitro characterisation of the phagocytosis and fate of anthrax spores in macrophages and the effects of anti-PA antibody. J Med Microbiol 51, 821–831.
    [Google Scholar]
  44. Welkos, S. L., Cote, C. K., Rea, K. M. & Gibbs, P. H. ( 2004; ). A microtiter fluorometric assay to detect the germination of Bacillus anthracis spores and the germination inhibitory effects of antibodies. J Microbiol Methods 56, 253–265.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.008656-0
Loading
/content/journal/jmm/10.1099/jmm.0.008656-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error