1887

Abstract

This study is believed to be the first to provide guidelines for facilitating interpretation of results based on full and 527 bp 16S rRNA gene sequencing and MicroSeq databases used for identifying medically important aerobic Gram-positive bacteria. Overall, full and 527 bp 16S rRNA gene sequencing can identify 24 and 40 % of medically important Gram-positive cocci (GPC), and 21 and 34 % of medically important Gram-positive rods (GPR) confidently to the species level, whereas the full-MicroSeq and 500-MicroSeq databases can identify 15 and 34 % of medically important GPC and 14 and 25 % of medically important GPR confidently to the species level. Among staphylococci, streptococci, enterococci, mycobacteria, corynebacteria, nocardia and members of and related taxa (, , and ), the methods and databases are least useful for identification of staphylococci and nocardia. Only 0–2 and 2–13 % of staphylococci, and 0 and 0–10 % of nocardia, can be confidently and doubtfully identified, respectively. However, these methods and databases are most useful for identification of and related taxa, with 36–56 and 11–14 % of and related taxa confidently and doubtfully identified, respectively. A total of 15 medically important GPC and 18 medically important GPR that should be confidently identified by full 16S rRNA gene sequencing are not included in the full-MicroSeq database. A total of 9 medically important GPC and 21 medically important GPR that should be confidently identified by 527 bp 16S rRNA gene sequencing are not included in the 500-MicroSeq database. 16S rRNA gene sequence results of Gram-positive bacteria should be interpreted with basic phenotypic tests results. Additional biochemical tests or sequencing of additional gene loci are often required for definitive identification. To improve the usefulness of the MicroSeq databases, bacterial species that can be confidently identified by 16S rRNA gene sequencing but are not found in the MicroSeq databases should be included.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.008615-0
2009-08-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/jmm/58/8/1030.html?itemId=/content/journal/jmm/10.1099/jmm.0.008615-0&mimeType=html&fmt=ahah

References

  1. Adékambi, T., Colson, P. & Drancourt, M. ( 2003; ). rpoB-based identification of nonpigmented and late-pigmenting rapidly growing mycobacteria. J Clin Microbiol 41, 5699–5708.[CrossRef]
    [Google Scholar]
  2. Bosshard, P. P., Zbinden, R., Abels, S., Böddinghaus, B., Altwegg, M. & Böttger, E. C. ( 2006; ). 16S rRNA gene sequencing versus the API 20 NE system and the VITEK 2 ID-GNB card for identification of nonfermenting Gram-negative bacteria in the clinical laboratory. J Clin Microbiol 44, 1359–1366.[CrossRef]
    [Google Scholar]
  3. Cloud, J. L., Conville, P. S., Croft, A., Harmsen, D., Witebsky, F. G. & Carroll, K. C. ( 2004; ). Evaluation of partial 16S ribosomal DNA sequencing for identification of nocardia species by using the MicroSeq 500 system with an expanded database. J Clin Microbiol 42, 578–584.[CrossRef]
    [Google Scholar]
  4. Cloud, J. L., Hoggan, K., Belousov, E., Cohen, S., Brown-Elliott, B. A., Mann, L., Wilson, R., Aldous, W., Wallace, R. J., Jr & Woods, G. L. ( 2005; ). Use of the MGB Eclipse system and SmartCycler PCR for differentiation of Mycobacterium chelonae and M. abscessus. J Clin Microbiol 43, 4205–4207.[CrossRef]
    [Google Scholar]
  5. CLSI ( 2008; ). Interpretive Criteria for Identification of Bacteria and Fungi by DNA Target Sequencing, approved guideline MM18-A. Wayne, PA: Clinical and Laboratory Standards Institute.
  6. Conville, P. S., Zelazny, A. M. & Witebsky, F. G. ( 2006; ). Analysis of secA1 gene sequences for identification of Nocardia species. J Clin Microbiol 44, 2760–2766.[CrossRef]
    [Google Scholar]
  7. Drancourt, M., Bollet, C., Carlioz, A., Martelin, R., Gayral, J. P. & Raoult, D. ( 2000; ). 16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates. J Clin Microbiol 38, 3623–3630.
    [Google Scholar]
  8. Faibis, F., Mihaila, L., Perna, S., Lefort, J. F., Demachy, M. C., Le Flèche-Matéos, A. & Bouvet, A. ( 2008; ). Streptococcus sinensis: an emerging agent of infective endocarditis. J Med Microbiol 57, 528–531.[CrossRef]
    [Google Scholar]
  9. Fontana, C., Favaro, M., Pelliccioni, M., Pistoia, E. S. & Favalli, C. ( 2005; ). Use of the MicroSeq 500 16S rRNA gene-based sequencing for identification of bacterial isolates that commercial automated systems failed to identify correctly. J Clin Microbiol 43, 615–619.[CrossRef]
    [Google Scholar]
  10. Gauduchon, V., Chalabreysse, L., Etienne, J., Célard, M., Benito, Y., Lepidi, H., Thivolet-Béjui, F. & Vandenesch, F. ( 2003; ). Molecular diagnosis of infective endocarditis by PCR amplification and direct sequencing of DNA from valve tissue. J Clin Microbiol 41, 763–766.[CrossRef]
    [Google Scholar]
  11. Goh, S. H., Potter, S., Wood, J. O., Hemmingsen, S. M., Reynolds, R. P. & Chow, A. W. ( 1996; ). HSP60 gene sequences as universal targets for microbial species identification: studies with coagulase-negative staphylococci. J Clin Microbiol 34, 818–823.
    [Google Scholar]
  12. Heikens, E., Fleer, A., Paauw, A., Florijn, A. & Fluit, A. C. ( 2005; ). Comparison of genotypic and phenotypic methods for species-level identification of clinical isolates of coagulase-negative staphylococci. J Clin Microbiol 43, 2286–2290.[CrossRef]
    [Google Scholar]
  13. Janda, J. M. & Abbott, S. L. ( 2007; ). 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J Clin Microbiol 45, 2761–2764.[CrossRef]
    [Google Scholar]
  14. Kotilainen, P., Heiro, M., Jalava, J., Rantakokko, V., Nikoskelainen, J., Nikkari, S. & Rantakokko-Jalava, K. ( 2006; ). Aetiological diagnosis of infective endocarditis by direct amplification of rRNA genes from surgically removed valve tissue. An 11-year experience in a Finnish teaching hospital. Ann Med 38, 263–273.[CrossRef]
    [Google Scholar]
  15. Kwok, A. Y., Su, S. C., Reynolds, R. P., Bay, S. J., Av-Gay, Y., Dovichi, N. J. & Chow, A. W. ( 1999; ). Species identification and phylogenetic relationships based on partial HSP60 gene sequences within the genus Staphylococcus. Int J Syst Bacteriol 49, 1181–1192.[CrossRef]
    [Google Scholar]
  16. Lau, S. K., Woo, P. C., Woo, G. K. & Yuen, K. Y. ( 2002; ). Catheter-related Microbacterium bacteremia identified by 16S rRNA gene sequencing. J Clin Microbiol 40, 2681–2685.[CrossRef]
    [Google Scholar]
  17. Lau, S. K., Ng, K. H., Woo, P. C., Yip, K. T., Fung, A. M., Woo, G. K., Chan, K. M., Que, T. L. & Yuen, K. Y. ( 2006; ). Usefulness of the MicroSeq 500 16S rDNA bacterial identification system for identification of anaerobic Gram positive bacilli isolated from blood cultures. J Clin Pathol 59, 219–222.[CrossRef]
    [Google Scholar]
  18. Mellmann, A., Cloud, J. L., Andrees, S., Blackwood, K., Carroll, K. C., Kabani, A., Roth, A. & Harmsen, D. ( 2003; ). Evaluation of RIDOM, MicroSeq, and GenBank services in the molecular identification of Nocardia species. Int J Med Microbiol 293, 359–370.[CrossRef]
    [Google Scholar]
  19. Mignard, S. & Flandrois, J. P. ( 2006; ). 16S rRNA sequencing in routine bacterial identification: a 30-month experiment. J Microbiol Methods 67, 574–581.[CrossRef]
    [Google Scholar]
  20. Murray, P. R., Baron, E. J., Jorgensen, J. H., Landry, M. L. & Pfaller, M. A. ( 2007; ). Manual of Clinical Microbiology, 9th edn. Washington, DC: American Society for Microbiology.
  21. Patel, J. B., Leonard, D. G., Pan, X., Musser, J. M., Berman, R. E. & Nachamkin, I. ( 2000; ). Sequence-based identification of Mycobacterium species using the MicroSeq 500 16S rDNA bacterial identification system. J Clin Microbiol 38, 246–251.
    [Google Scholar]
  22. Petti, C. A. ( 2007; ). Detection and identification of microorganisms by gene amplification and sequencing. Clin Infect Dis 44, 1108–1114.[CrossRef]
    [Google Scholar]
  23. Ringuet, H., Akoua-Koffi, C., Honore, S., Varnerot, A., Vincent, V., Berche, P., Gaillard, J. L. & Pierre-Audigier, C. ( 1999; ). hsp65 sequencing for identification of rapidly growing mycobacteria. J Clin Microbiol 37, 852–857.
    [Google Scholar]
  24. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef]
    [Google Scholar]
  25. Tang, Y. W., Ellis, N. M., Hopkins, M. K., Smith, D. H., Dodge, D. E. & Persing, D. H. ( 1998; ). Comparison of phenotypic and genotypic technique for identification of unusual aerobic pathogenic gram-negative bacilli. J Clin Microbiol 36, 3674–3679.
    [Google Scholar]
  26. Tang, Y. W., Von Graevenitz, A., Waddington, M. G., Hopkins, M. K., Smith, D. H., Li, H., Kolbert, C. P., Montgomery, S. O. & Persing, D. H. ( 2000; ). Identification of coryneform bacterial isolates by ribosomal DNA sequence analysis. J Clin Microbiol 38, 1676–1678.
    [Google Scholar]
  27. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  28. Uçkay, I., Rohner, P., Bolivar, I., Ninet, B., Djordjevic, M., Nobre, V., Garzoni, C. & Schrenzel, J. ( 2007; ). Streptococcus sinensis endocarditis outside Hong Kong. Emerg Infect Dis 13, 1250–1252.[CrossRef]
    [Google Scholar]
  29. Woo, P. C., Leung, A. S., Leung, K. W. & Yuen, K. Y. ( 2001; ). Identification of slide-coagulase positive, tube-coagulase negative Staphylococcus aureus by 16S ribosomal RNA gene sequencing. Mol Pathol 54, 244–247.[CrossRef]
    [Google Scholar]
  30. Woo, P. C., Tam, D. M., Leung, K. W., Lau, S. K., Teng, J. L., Wong, M. K. & Yuen, K. Y. ( 2002; ). Streptococcus sinensis sp. nov., a novel Streptococcus species isolated from a patient with infective endocarditis. J Clin Microbiol 40, 805–810.[CrossRef]
    [Google Scholar]
  31. Woo, P. C., Fung, A. M., Lau, S. K., Chan, B. Y., Chiu, S. K., Teng, J. L., Que, T. L., Yung, R. W. & Yuen, K. Y. ( 2003a; ). Granulicatella adiacens and Abiotrophia defectiva bacteraemia characterised by 16S rRNA gene sequencing. J Med Microbiol 52, 137–140.[CrossRef]
    [Google Scholar]
  32. Woo, P. C., Lau, S. K., Fung, A. M., Chiu, S. K., Yung, R. W. & Yuen, K. Y. ( 2003b; ). Gemella bacteraemia characterized by 16S ribosomal RNA gene sequencing. J Clin Pathol 56, 690–693.[CrossRef]
    [Google Scholar]
  33. Woo, P. C., Ng, K. H., Lau, S. K., Yip, K. T., Fung, A. M., Leung, K. W., Tam, D. M., Que, T. L. & Yuen, K. Y. ( 2003c; ). Usefulness of the MicroSeq 500 16S ribosomal DNA-based bacterial identification system for identification of clinically significant bacterial isolates with ambiguous biochemical profiles. J Clin Microbiol 41, 1996–2001.[CrossRef]
    [Google Scholar]
  34. Woo, P. C., Ngan, A. H., Lau, S. K. & Yuen, K. Y. ( 2003d; ). Tsukamurella conjunctivitis: a novel clinical syndrome. J Clin Microbiol 41, 3368–3371.[CrossRef]
    [Google Scholar]
  35. Woo, P. C., Teng, J. L., Lau, S. K., Lum, P. N., Leung, K. W., Wong, K. L., Li, K. W., Lam, K. C. & Yuen, K. Y. ( 2003e; ). Analysis of a viridans group strain reveals a case of bacteremia due to Lancefield group G α-hemolytic Streptococcus dysgalactiae subsp. equisimilis in a patient with pyomyositis and reactive arthritis. J Clin Microbiol 41, 613–618.[CrossRef]
    [Google Scholar]
  36. Woo, P. C., Tam, D. M., Lau, S. K., Fung, A. M. & Yuen, K. Y. ( 2004a; ). Enterococcus cecorum empyema thoracis successfully treated with cefotaxime. J Clin Microbiol 42, 919–922.[CrossRef]
    [Google Scholar]
  37. Woo, P. C., Teng, J. L., Leung, K. W., Lau, S. K., Tse, H., Wong, B. H. & Yuen, K. Y. ( 2004b; ). Streptococcus sinensis may react with Lancefield group F antiserum. J Med Microbiol 53, 1083–1088.[CrossRef]
    [Google Scholar]
  38. Woo, P. C., Tse, H., Wong, S. S., Tse, C. W., Fung, A. M., Tam, D. M., Lau, S. K. & Yuen, K. Y. ( 2005; ). Life-threatening invasive Helcococcus kunzii infections in intravenous drug users and ermA-mediated erythromycin resistance. J Clin Microbiol 43, 6205–6208.[CrossRef]
    [Google Scholar]
  39. Woo, P. C., Chung, L. M., Teng, J. L., Tse, H., Pang, S. S., Lau, V. Y., Wong, V. W., Kam, K. L., Lau, S. K. & Yuen, K. Y. ( 2007; ). In silico analysis of 16S ribosomal RNA gene sequencing-based methods for identification of medically important anaerobic bacteria. J Clin Pathol 60, 576–579.
    [Google Scholar]
  40. Woo, P. C., Lau, S. K., Teng, J. L., Tse, H. & Yuen, K. Y. ( 2008a; ). Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clin Microbiol Infect 14, 908–934.[CrossRef]
    [Google Scholar]
  41. Woo, P. C., Teng, J. L., Tsang, S. N., Tse, C. W., Lau, S. K. & Yuen, K. Y. ( 2008b; ). The oral cavity as natural reservoir for Streptococcus sinensis. Clin Microbiol Infect 14, 1075–1079.[CrossRef]
    [Google Scholar]
  42. Yamada-Noda, M., Ohkusu, K., Hata, H., Shah, M. M., Nhung, P. H., Sun, X. S., Hayashi, M. & Ezaki, T. ( 2007; ). Mycobacterium species identification – a new approach via dnaJ gene sequencing. Syst Appl Microbiol 30, 453–462.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.008615-0
Loading
/content/journal/jmm/10.1099/jmm.0.008615-0
Loading

Data & Media loading...

Supplements

Supplementary Table S1a. Comparison of 16S rDNA sequences of medically important , and species. [ PDF file] (66 KB)

PDF

Supplementary Table S1b. Comparison of 16S rDNA sequences of medically important and species. [ PDF file] (61 KB)

PDF

Supplementary Table S1c. Comparison of 16S rDNA sequences of medically important , and species. [ PDF file] (56 KB)

PDF

Supplementary Table S1d. Comparison of 16S rDNA sequences of medically important , , , , , , , , , and species. [ PDF file] (56 KB)

PDF

Supplementary Table S1e. Comparison of 16S rDNA sequences of medically important , , , , , , and species. [ PDF file] (53 KB)

PDF

Supplementary Table S1f. Comparison of 16S rDNA gene sequences of medically important species. [ PDF file] (79 KB)

PDF

Supplementary Table S1g. Comparison of 16S rDNA gene sequences of medically important species. [ PDF file] (64 KB)

PDF

Supplementary Table S1h. Comparison of 16S rDNA gene sequences of medically important species. [ PDF file] (60 KB)

PDF

Supplementary Table S1i. Comparison of 16S rDNA gene sequences of medically important , , , , , , , and species. [ PDF file] (62 KB)

PDF

Supplementary Table S1j. Comparison of 16S rDNA gene sequences of medically important , , , , , , , , , , and species. [ PDF file] (60 KB)

PDF

Supplementary Table S1k. Comparison of 16S rDNA gene sequences of medically important , , , , , , , , and species. [ PDF file] (59 KB)

PDF

Supplementary Table S2a. Usefulness of full 16S rDNA sequence, 527 bp 16S rDNA sequence and the MicroSeq databases for identification of medically important , and species. [ PDF file] (68 KB)

PDF

Supplementary Table S2b. Usefulness of full 16S rDNA sequence, 527 bp 16S rDNA sequence and the MicroSeq databases for identification of medically important and species. [ PDF file] (29 KB)

PDF

Supplementary Table S2c. Usefulness of full 16S rDNA sequence, 527 bp 16S rDNA sequence and the MicroSeq databases for identification of medically important , and species. [ PDF file] (28 KB)

PDF

Supplementary Table S2d. Usefulness of full 16S rDNA sequence, 527 bp 16S rDNA sequence and the MicroSeq databases for identification of medically important , , , , , , , , , and species. [ PDF file] (22 KB)

PDF

Supplementary Table S2e. Usefulness of full 16S rDNA sequence, 527 bp 16S rDNA sequence and the MicroSeq databases for identification of medically important , , , , , , and species. [ PDF file] (21 KB)

PDF

PDF file 

PDF

Supplementary Table S2g. Usefulness of full 16S rDNA sequence, 527 bp 16S rDNA sequence and the MicroSeq databases for identification of medically important species. [ PDF file] (26 KB)

PDF

Supplementary Table S2h. Usefulness of full 16S rDNA sequence, 527 bp 16S rDNA sequence and the MicroSeq databases for identification of medically important species. [ PDF file] (28KB)

PDF

Supplementary Table S2i. Usefulness of full 16S rDNA sequence, 527 bp 16S rDNA sequence and the MicroSeq databases for identification of medically important , , , , , , , and species. [ PDF file] (26 KB)

PDF

Supplementary Table S2j. Usefulness of full 16S rDNA sequence, 527 bp 16S rDNA sequence and the MicroSeq databases for identification of medically important , , , , , , , , , , and species. [ PDF file] (23 KB)

PDF

Supplementary Table S2k. Usefulness of full 16S rDNA sequence, 527 bp 16S rDNA sequence and the MicroSeq databases for identification of medically important , , , , , , , , and species. [ PDF file] (25 KB)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error