1887

Abstract

The distribution of different serovars in Hungary has not been reported previously. The objective of this study was to determine the distribution and prevalence of serovars in a high-risk population by genotyping. The endocervical specimens of 484 female sex workers (FSWs) were screened for by plasmid PCR. Genotyping was performed in all -positive samples by PCR-based RFLP analysis of the gene. A total of 32 specimens (6.6 %) were positive for . Age was an important risk factor for infection in FSWs. The highest prevalence was detected in women under the age of 20 (18.8 %). All positive specimens were successfully genotyped and seven serovars were identified. The most prevalent was serovar D (34.4 %), followed by E (21.9 %), F (18.8 %), G (9.4 %), J (9.4 %), H (3.1 %) and I (3.1 %). A heterogeneous distribution of serovars was observed in the study group, where the most common serovars were D, E and F comprising 75 % of the positive samples. This PCR-based RFLP method could be used in epidemiological studies on the prevalence of infection to provide more information and to compare the serovar distribution among different cohorts.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.008607-0
2009-06-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/jmm/58/6/760.html?itemId=/content/journal/jmm/10.1099/jmm.0.008607-0&mimeType=html&fmt=ahah

References

  1. Caldwell, H. D., Kromhout, J. & Schachter, J. ( 1981; ). Purification and partial characterization of the major outer membrane protein of Chlamydia trachomatis. Infect Immun 31, 1161–1176.
    [Google Scholar]
  2. Cwikel, J. G., Lazer, T., Press, F. & Lazer, S. ( 2008; ). Sexually transmissible infections among female sex workers: an international review with an emphasis on hard-to-access populations. Sex Health 5, 9–16.[CrossRef]
    [Google Scholar]
  3. Deák, J., Nagy, E., Veréb, I., Mészáros, G., Kovács, L., Nyári, T. & Berbik, I. ( 1997; ). Prevalence of Chlamydia trachomatis infection in a low-risk population in Hungary. Sex Transm Dis 24, 538–542.[CrossRef]
    [Google Scholar]
  4. Dean, D., Oudens, E., Bolan, G., Padian, N. & Schachter, J. ( 1995; ). Major outer membrane protein variants of Chlamydia trachomatis are associated with severe upper genital tract infections and histopathology in San Francisco. J Infect Dis 172, 1013–1022.[CrossRef]
    [Google Scholar]
  5. Folch, C., Esteve, A., Sanclemente, C., Martro, E., Lugo, R., Molinos, S., Gonzalez, V., Ausina, V. & Casabona, J. ( 2008; ). Prevalence of human immunodeficiency virus, Chlamydia trachomatis, and Neisseria gonorrhoeae and risk factors for sexually transmitted infections among immigrant female sex workers in Catalonia, Spain. Sex Transm Dis 35, 178–183.[CrossRef]
    [Google Scholar]
  6. Gao, X., Chen, X. S., Yin, Y. P., Zhong, M. Y., Shi, M. Q., Wei, W. H., Chen, Q., Peeling, R. W. & Mabey, D. ( 2007; ). Distribution study of Chlamydia trachomatis serovars among high-risk women in China performed using PCR-restriction fragment length polymorphism genotyping. J Clin Microbiol 45, 1185–1189.[CrossRef]
    [Google Scholar]
  7. Geisler, W. M., Suchland, R. J., Whittington, W. L. & Stamm, W. E. ( 2003; ). The relationship of serovar to clinical manifestations of urogenital Chlamydia trachomatis infection. Sex Transm Dis 30, 160–165.[CrossRef]
    [Google Scholar]
  8. Jalal, H., Stephen, H., Curran, M. D., Burton, J., Bradley, M. & Carne, C. ( 2006; ). Development and validation of a rotor-gene real-time PCR assay for detection, identification, and quantification of Chlamydia trachomatis in a single reaction. J Clin Microbiol 44, 206–213.[CrossRef]
    [Google Scholar]
  9. Klint, M., Fuxelius, H. H., Goldkuhl, R. R., Skarin, H., Rutemark, C., Andersson, S. G., Persson, K. & Herrmann, B. ( 2007; ). High-resolution genotyping of Chlamydia trachomatis strains by multilocus sequence analysis. J Clin Microbiol 45, 1410–1414.[CrossRef]
    [Google Scholar]
  10. Lan, J., Walboomers, J. M., Roosendaal, R., Van Doornum, G. J., MacLaren, D. M., Meijer, C. J. & Van den Brule, A. J. ( 1993; ). Direct detection and genotyping of Chlamydia trachomatis in cervical scrapes by using polymerase chain reaction and restriction fragment length polymorphism analysis. J Clin Microbiol 31, 1060–1065.
    [Google Scholar]
  11. Lan, J., Melgers, I., Meijer, C. J., Walboomers, J. M., Roosendaal, R., Burger, C., Bleker, O. P. & Van den Brule, A. J. ( 1995; ). Prevalence and serovar distribution of asymptomatic cervical Chlamydia trachomatis infections as determined by highly sensitive PCR. J Clin Microbiol 33, 3194–3197.
    [Google Scholar]
  12. Lima, H. E., Oliveira, M. B., Valente, B. G., Afonso, D. A., Darocha, W. D., Souza, M. C., Alvim, T. C., Barbosa-Stancioli, E. F. & Noronha, F. S. ( 2007; ). Genotyping of Chlamydia trachomatis from endocervical specimens in Brazil. Sex Transm Dis 34, 709–717.[CrossRef]
    [Google Scholar]
  13. Lysén, M., Österlund, A., Rubin, C. J., Persson, T., Persson, I. & Herrmann, B. ( 2004; ). Characterization of ompA genotypes by sequence analysis of DNA from all detected cases of Chlamydia trachomatis infections during 1 year of contact tracing in a Swedish County. J Clin Microbiol 42, 1641–1647.[CrossRef]
    [Google Scholar]
  14. Mak, R. P., Van Renterghem, L. & Traen, A. ( 2005; ). Chlamydia trachomatis in female sex workers in Belgium: 1998–2003. Sex Transm Infect 81, 89–90.[CrossRef]
    [Google Scholar]
  15. Morré, S. A., Rozendaal, L., Van Valkengoed, I. G., Boeke, A. J., Van Voorst Vader, P. C., Schirm, J., de Blok, S., Van den Hoek, J. A., Van Doornum, G. J. & other authors ( 2000a; ). Urogenital Chlamydia trachomatis serovars in men and women with a symptomatic or asymptomatic infection: an association with clinical manifestations? J Clin Microbiol 38, 2292–2296.
    [Google Scholar]
  16. Morré, S. A., Ossewaarde, J. M., Savelkoul, P. H., Stoof, J., Meijer, C. J. & Van den Brule, A. J. ( 2000b; ). Analysis of genetic heterogeneity in Chlamydia trachomatis clinical isolates of serovars D, E, and F by amplified fragment length polymorphism. J Clin Microbiol 38, 3463–3466.
    [Google Scholar]
  17. Ngandjio, A., Clerc, M., Fonkoua, M. C., Thonnon, J., Lunel, F., Bébéar, C., Bianchi, A. & De Barbeyrac, B. ( 2004; ). Restriction endonuclease patterns of the omp1 gene of reference Chlamydia trachomatis strains and characterization of isolates from Cameroonian students. J Med Microbiol 53, 47–50.[CrossRef]
    [Google Scholar]
  18. Numazaki, K. ( 2004; ). Current problems of perinatal Chlamydia trachomatis infections. J Immune Based Ther Vaccines 2, 4 [CrossRef]
    [Google Scholar]
  19. Ossewaarde, J. M., Rieffe, M., Rozenberg-Arska, M., Ossenkoppele, P. M., Nawrocki, R. P. & Van Loon, A. M. ( 1992; ). Development and clinical evaluation of a polymerase chain reaction test for detection of Chlamydia trachomatis. J Clin Microbiol 30, 2122–2128.
    [Google Scholar]
  20. Paavonen, J. & Eggert-Kruse, W. ( 1999; ). Chlamydia trachomatis: impact on human reproduction. Hum Reprod Update 5, 433–447.[CrossRef]
    [Google Scholar]
  21. Paavonen, J. & Lehtinen, M. ( 1996; ). Chlamydial pelvic inflammatory disease. Hum Reprod Update 2, 519–529.[CrossRef]
    [Google Scholar]
  22. Pannekoek, Y., Morelli, G., Kusecek, B., Morré, S. A., Ossewaarde, J. M., Langerak, A. A. & Van der Ende, A. ( 2008; ). Multi locus sequence typing of Chlamydiales: clonal groupings within the obligate intracellular bacteria Chlamydia trachomatis. BMC Microbiol 8, 42 [CrossRef]
    [Google Scholar]
  23. Papadogeorgaki, H., Caroni, C., Frangouli, E., Flemetakis, A., Katsambas, A. & Hadjivassiliou, M. ( 2006; ). Prevalence of sexually transmitted infections in female sex workers in Athens, Greece – 2005. Eur J Dermatol 16, 662–665.
    [Google Scholar]
  24. Rabenau, H. F., Köhler, E., Peters, M., Doerr, H. W. & Weber, B. ( 2000; ). Low correlation of serology with detection of Chlamydia trachomatis by ligase chain reaction and antigen EIA. Infection 28, 97–102.[CrossRef]
    [Google Scholar]
  25. Resl, V., Kumpová, M., Cerná, L., Novák, M. & Pazdiora, P. ( 2003; ). Prevalence of STDs among prostitutes in Czech border area with Germany in 1997–2001 assessed in project “Jana”. Sex Transm Infect 79, E3 [CrossRef]
    [Google Scholar]
  26. Sturm-Ramirez, K., Brumblay, H., Diop, K., Gueye-Ndiaye, A., Sankalé, J. L., Thior, I., N'Doye, I., Hsieh, C. C., Mboup, S. & Kanki, P. J. ( 2000; ). Molecular epidemiology of genital Chlamydia trachomatis infection in high-risk women in Senegal, West Africa. J Clin Microbiol 38, 138–145.
    [Google Scholar]
  27. Thylefors, B., Négrel, A. D., Pararajasegaram, R. & Dadzie, K. Y. ( 1995; ). Global data on blindness. Bull World Health Organ 73, 115–121.
    [Google Scholar]
  28. Ujházy, A., Csaba, A., Máté, S., Papp, Z. & Sziller, I. ( 2007; ). Chlamydia prevalence and correlates among female adolescents in Hungary. J Adolesc Health 41, 513–515.[CrossRef]
    [Google Scholar]
  29. Van de Laar, M. J. ( 2006; ). The emergence of LGV in western Europe: what do we know, what can we do? Euro Surveill 11, 146–148.
    [Google Scholar]
  30. Van Duynhoven, Y. T., Ossewaarde, J. M., Derksen-Nawrocki, R. P., Van der Meijden, W. I. & Van de Laar, M. J. ( 1998; ). Chlamydia trachomatis genotypes: correlation with clinical manifestations of infection and patients' characteristics. Clin Infect Dis 26, 314–322.[CrossRef]
    [Google Scholar]
  31. Wang, S. P., Kuo, C. C., Barnes, R. C., Stephens, R. S. & Grayston, J. T. ( 1985; ). Immunotyping of Chlamydia trachomatis with monoclonal antibodies. J Infect Dis 152, 791–800.[CrossRef]
    [Google Scholar]
  32. Ward, H., Day, S., Green, A., Cooper, K. & Weber, J. ( 2004; ). Declining prevalence of STI in the London sex industry, 1985 to 2002. Sex Transm Infect 80, 374–378.[CrossRef]
    [Google Scholar]
  33. WHO ( 2001; ). Global Prevalence and Incidence of Selected Curable Sexually Transmitted Infections: Overview and Estimates, pp. 10–14. Geneva: World Health Organization.
  34. Yuan, Y., Zhang, Y. X., Watkins, N. G. & Caldwell, H. D. ( 1989; ). Nucleotide and deduced amino acid sequences for the four variable domains of the major outer membrane proteins of the 15 Chlamydia trachomatis serovars. Infect Immun 57, 1040–1049.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.008607-0
Loading
/content/journal/jmm/10.1099/jmm.0.008607-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error